Graphical 3D Modeling of Molecules and Nanostructures in Sub-nanometer Scale with the BSM-SG Atomic ModelsStoyan Sarg Sargoytchev, Toronto, Canada



1

Scattering experiments: Deviation from Rutherford scattering theory at alpha particles with energy above 25 MeV



# Starting point of BSM-SG theory

Fundamental particles at Planck scale and Supergravitational law (SG)*mm* $1''''$ sg 2  $F_{SG} = G_{SG} \frac{G_{SG} - G_{SG}}{r^3}$  $\frac{1}{16}$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{1}{2}$   $\frac{1}{2}$  in classical empty space *SG*3*rhG*5000 - Planck length  $\frac{1}{3}$  = 1.616×10<sup>-35</sup> (*m*  $L_{\rm PL} = \sqrt{\frac{V}{c}}$  $\frac{1}{2\pi c^3}$  = 1.616×10<sup>-33</sup> (*m*)  $=$   $|$   $=$   $=$   $|$  6  $|$  6  $\times$   $|$   $\cup$   $=$ ×= $L_{PL}$  $\pi c$  and  $\pi c$  and *c*4000 *hG*- Planck time $\frac{3}{c^5}$  = 5.39×10<sup>-44</sup> (s)  $\frac{1}{2\pi c^5}$  = 5.39×10<sup>-44</sup> (s)  $t_{PL} = \sqrt{\frac{2}{2-5}} = 5.39 \times 10^{-7}$ ×= $\pi c$  and  $\pi c$  and 2000 1000 Number of layers

The fine structure constant - a signature of the number of sub-cycles of the common mode oscillations in one full cycle (BSM Chapter 12)

 $\alpha = 2/[(n^2 + 2\pi^2)^{1/2} + n] = 7.29735194 \times 10^{-3}$  *- derived* For n =137  $\alpha = 7.2973525 \times 10^{-3}$  (*CODATA* 98)

# Hypothetical crystallization at the lowest level of matter organization





The QP angular gaps combine in one gap of 7.355 $^{\circ}$ , so QB can be left or right-hand twisted. This is a 2-bit memory carrying the chirality at the lowest level of matter organization.

**STOYAN SARG<sup>2014</sup>**

Why the Periodic table of elements has such a shape?

Isn't define by some structural arrangement of the protons and neutrons in the atomic nuclei?



**STOYAN SARG<sup>2014</sup>**

BSM-SG models of atomic nuclei as 3D fractal formations of protons and neutrons

Proton and neutron posses one and the same superdens material structure but with a different shape

**proton** a twisted torus with externally detectable E-field

**neutron** a double folded torus with a proximity locked electrical field



Fig. 1 Simple atomic nuclei

**FSG = GSG m0<sup>2</sup>/r3 -** Supergravitation Law (SG forces are detectable as Casimir Forces)

- Protons and neutrons possess one and a same superdens matter having only a different external shape.
- At close distance they interact with Super Gravitational (SG) forces which appear as nuclear forces.
- The analysis of  $\mathsf{H}_2$  and  $\mathsf{D}_2$  spectra using BSM-SG models allows to determine the product

**GSGmo2 = 5.2651x10-33 [Nm<sup>3</sup> ]** (§9.7 of BSM-SG).

• The obtained constant was verified by theoretical estimate of the binding energy of deuterium nucleus, using a **simplified** method. The obtained value is 2.158 (MeV). (The experimental value is 2.2246 (MeV).

• According to BSM-SG, the superdense nuclear matter makes a space microcurvature. Nuclear reactions causes a change of this micro-curvature and the energy stored in the lattice structure of physical vacuum is released as nuclear energy. The stored energy is equal to the mass deficit expressed by the Einstein equation **E = mc2** .

**Panel 3.** Atomic nuclei of second and third rows of the Periodic Table and magnetic field interactions between the electron orbitals



Note: The principal chemical valence increases with z-number until the deuterons (protons) from the two poles are at different planes passing through the polar axis. In further z increase the deuterons (protons) are bound at equatorial region and excluded from principal valence. At noble gases all deuterons are bound at equatorial region by SG forces and excluded from any chemical valence.

**Berillium** Berillium ion (+) Ozone molecule magnetic lines **View section A** magnetic

Magnetic field interactions between the different orbitalsin atoms and molecules

**<sup>2014</sup>**

**STOYAN SARG**



#### **Panel 2.** Build-up trend of protons and neutrons apparent from Periodic table



Atomic nuclei of some selected elements

**STOYAN SARG<sup>2014</sup>**

e<sup>-</sup>orbit

beyond Rydberg

energy

level

Panel 8. Rydberg state and Rydberg matter in EM activated plasma

QM models of atoms **BSM-SG models** H and D atoms providing Rydberg atom Bohr model - impossible optical spectra (ion-electron pair) to define the boundary of Rydber atom (size) Hydrogen Deuterium drivina momentum -polar axisproton  $n = 2$ Å 0.67  $n = 1$  $(\bullet)$ proton ·2a<sub>o</sub> → **Balmer series orbits** boundary of no boundary for  $n \rightarrow \infty$ non-liner space **EM** radiation from no EM radiation from orbiting electron orbiting electron Cluster of ion-electron pairs (Rydberg matter) S N S S N S N  $1 - 1$  $e^-$  orbit of the /ion-electron pair  $0.15 \text{ nm}$ **SAAAAAAAAA SAAAAAAAAA MAMMAN MANAMAR MANAMAR SAAAAAAAAA**  $\mathop{\otimes}\limits^{\curvearrowleft}_{\curvearrowleft} \mathbb{I}$ a $\scriptstyle\circ$ WWWW **HITTITLE** p trajectory e<sup>-</sup> trajectory magnetic lines

**<sup>2014</sup>**

**STOYAN SARG**

The anomalous magnetic momentum of the electron at its confined motion velocity of 13.6 eV provides a constant driving momentum. This provides a significant driving momentum to the Rydberg atom due to the helical trace of the electron. This momentum become much more stable if an external magnetic field is applied.

The Rydberg matter from hydrogen or deuterium exhibits a strong EM signature (experimentally observed)

**Panel 5.** BSM-SG atomic models and nanotechnology Example of analysis of Single sheet graphene





a. TEAM microscope image of a single wall Carbon sheet

b. Processed image showing a signature of 2 parallel planes

Nanotube, Courtesy of A. Javey et al. Nano Lett., 4, 1319, (2004



#### Note:

The plane of P1 & P2 is perpendicular to the plane of P3 &P4. This provides a slight displacement of the locations of the electronic orbits. This feature is detectable by the TEAM microscope.

**STOYAN SARG**

**<sup>2014</sup>**

4<sup>rth</sup> International Conference Nanotek & Expo $\begin{bmatrix} 10 & 10 \end{bmatrix}$ 



**<sup>2014</sup>**

**STOYAN SARG**

**Fig. 6.** Atomic arrangement in somesimple molecules.

**Fig. 7.** (Left) A cluster of three water molecules, as envisioned by BSM-SG theory. The existenceof this cluster is proofed by FIR spectroscopy



#### Aspirin by BSM-SG models



Fig. 8. Aspirin molecule with a ring atomic structure: possesses an energy storing mechanism as rotating quantum states

**STOYAN SARG<sup>2014</sup>**



**Fig. 9**. Magnetic field interactions between different orbitals in the atoms and molecules





**In the book STRUCTURAL PHYSICS OF NUCLEAR FUSION a method is shown for identification the position of the fused proton (deuteron) by estimation the change of the center of mass of the recipient nucleus. The method uses the derived constant CSG and the dimensions of proton and neutron.**

**STOYAN SARG<sup>2014</sup>**

Panel 12. Colloidal silver nanoprisms: Experimental observations and BSM –SG models

Silver nanoparticles. Courtesy of R. Jin et al. Nature 2003 Oct 2;425(6957):487-90.



The trend continues in the upper level fractal formations in XY plane and in Z axes as stacks. This leads to formation of triangular prisms or piramids in the nanoscale range.

**STOYAN SARG<sup>2014</sup>** 4<sup>rth</sup> International Conference Nanotek & Expo $\begin{bmatrix} 15 \end{bmatrix}$ 

Potential application of the BSM-SG atomic models.

• BSM-SG theory provides atomic models with 3D geometry and dimensions.

• BSM-SG models permits classical explanations of the boundary size of excited states, nuclear spin, angular restriction of chemical bonds and mutual magnetic interactions between orbitals.

• The Atlas of Atomic Nuclear Structures (ANS) provides BSM-SG models for the elements in the range 1<Z<103, using symbolic shapes for protons and neutrons. The derived models perfectly match the shape of the Periodic table.

• **BSM-SG models could be used for 3D graphical modeling in chemistry, nanotechnology and LENR with a subangstrom resolution**

**Selected articles available online:**

http://vixra.org/author/stoyan\_sarg

