

Should parenteral nutrition solutions for preterm infants be photoprotected?

S Laborie¹, P Chessex², N Nasef³, B Masse⁴, JC Lavoie⁵.

¹Service de Néonatologie, Hospices Civils de Lyon, France ² Division of Neonatology, Children's and Women's Health Centre of BC, Canada ³ Mansoura University Children's Hospital, University of Mansoura, Mansoura, Egypt; ⁴ Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada;

⁵Departments of Pediatrics and Nutrition, University of Montreal, Montreal, QC, Canada.

votre santé, notre engagement

Introduction (1)

Weak anti oxidant system

- Immaturity
 - Low maternal milk intakes

Preterm infant

High oxidant load

- O₂
- Transfusion
- Sepsis
- Parenteral Nutrition

Neonatologie

Introduction (2)

- Light induces oxidation and peroxidation of parenteral nutrition solutions (*Neuzil 1995*).
- Multivitamines are the main source of peroxides in parenteral nutrition solutions(*Lavoie 1997*)
- Peroxides are cytotoxic and bactericid in vitro

Néonatologie

Introduction (3)

- Photoprotection of parenteral nutrition solutions
 - peroxides content (Lavoie 1997, Laborie 1998)
 - 2. biochimical benefices (Lavoie 2002, Chessex 2010)
 - nutritional benefices (Khashu 2006),
 - histological benefices in an animal model (Lavoie 2004)
 - no effect on bronchopulmonary dysplasia or death in very low birth weight infants (*Laborie 2014*)

Néonatologie

13/09/14

4

Hypothesis and aim

- Hypothesis:
- For some preterm infants, death is induced by the imbalance between the oxidant load and the antioxidant defenses.
- Photoprotection may decrease mortality in very low birth weight infants.

Néonatologie

13/09/14

Aim: To evaluate the consequences of photoprotection of parenteral nutrition solutions on mortality of very low birth weight infants.

Methods

- Identification of eligible trials through electronic databases
- Selection criteria: premature infants, newborn, TPN, photo-protection, clinical trials, mortality, death.

Néonatologie

Meta-analysis of mortality data at 36 wks GA or hospital discharge

Results (3)

> 17 titles excluded due to absence of relevance

17 abstracts examined

5 reviews excluded

12 studies assessed

Néonatologie 5 studies retained

> 1 title excluded due to absence of randomization

4 publications included in meta analysis

Results : Population

	J Pediatr, 2007	JPGN, 2009	FRBM, 2010	JPEN, 2014
Randomization	+	+	+	+
Sample size (n)	77	80	56	587
Male sex (%)	56	54	53	50
Gestational age (wk)	27 ± 2	31 ± 2	26 ± 1	28 ± 1
Birthweight (g)	915 ± 240	1588 ± 366	775 ± 161	969 ± 238
Days of TPNa/PNb	9 ±8a	11 ±8a	11 ± 1a	28 ± 14b
Mechanical Ventilation (%)	70	72	66	82
Mortality at 36 weeks (%)	5	32	16	7

votre santé, notre engagement

Results

	Light ex	xposed	Light protected		
At 36 weeks or hospital discharge	Dead	Alive	Dead	Alive	
J Pediatr, 2007	3	36	1	37	
JPGN, 2009	17	23	9	31	
FRBM, 2010	7	31	2	16	
JPEN, 2014	25	269	16	277	
Total	52	359	28	361	

Results

1	LP		LE		Odds Ratio		Odd	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fix	M-H, Fixed, 95% CI	
J Pediatr 2007	1	38	3	39	6.6%	0.32 [0.03, 3.26]		 	
Free Radic Biol Med 2010	2	18	7	38	9.2%	0.55 [0.10, 2.98]		+-	
J Pediatr Gastro Ntr 2009	9	40	17	40	30.2%	0.39 [0.15, 1.04]	-	+	
JPEN 2014	16	293	25	294	54.1%	0.62 [0.32, 1.19]	-	+	
Total (95% CI)		389		411	100.0%	0.53 [0.32, 0.87]	•	•	
Total events	28		52						
Heterogeneity: $Chi^2 = 0.77$, $df = 3$ (P = 0.86); $I^2 = 0$ %)					<u> </u>	.01 0.1	1 1	100	
Test for overall effect: $Z = 2.5$	51 (P = 0.0	01)				U.	.01 0.1 Lf	LE I	100

Néonatologie

13/09/14

10

Discussion

- Udge decrease in mortality
- Mechanisms ?
 - Balance oxidant anti oxidant?
 - Bioavailability of nutrient and vitamins?
 - Direct toxicity?

Long term outcome of survivors ?

13/09/14

Néonatologie

DiscussionMethods

- Opposite with Sherlock study (pediatrics, 2009)
 - Complete versus partial photoprotection
- Complexity of total photoprotection

Néonatologie

13/09/14

Feasability?

Conclusion

- Is it ethical to infuse now unprotected parenteral nutrition solutions to the most immature preterm infant?
- What happened in other populations with compromised oxidant/antioxidant balance????

Néonatologie

Perspectives

Can we find a way to minimize the infused oxidant load which is less time counsumming and less expensive?

Can we optimize the anti oxidant defenses of the most immature preterm infants?

Neonatologie