Sphaeranthus indicus : As natural immunomodulator

Dr. Sneha

Associate Prof.

Department of Pharmacology Gokaraju Rangaraju College of Pharmacy Osmania University

Herbs as immunomodulator

- Herbal drugs are known to possess immunomodulatory properties and generally act by stimulating both specific (cell-mediated) and non specific (humoral) immunity.
- Prunus amygdalus (Almond) and Buchanania lanzan (Chirronji),
 Euryale ferox (Tel makhana), and Zingiber officinale (Sonth),
 Ocimum basilium (tulsi), Ficus benghalensis.

Plant profile

Botanical name : Sphaerantus indicus Linn.

Family : Asteraceae

Traditional uses

- The plant is bitter, stomachic, demulcent. It is used in epilepsy, hemicrania, jaundice, liver disorders and gastric disorders.
- The roots are diuretic, expectorant, febrifuge, and antihelmintic.
- The leaf is good for skin diseases and is considered as nerve tonic.
- The flowers are highly esteemed as alternative, depurative and used as blood purifier in skin diseases³.

Chemical Constituents

Sterols: β-Sitosterol and stigmasterol.

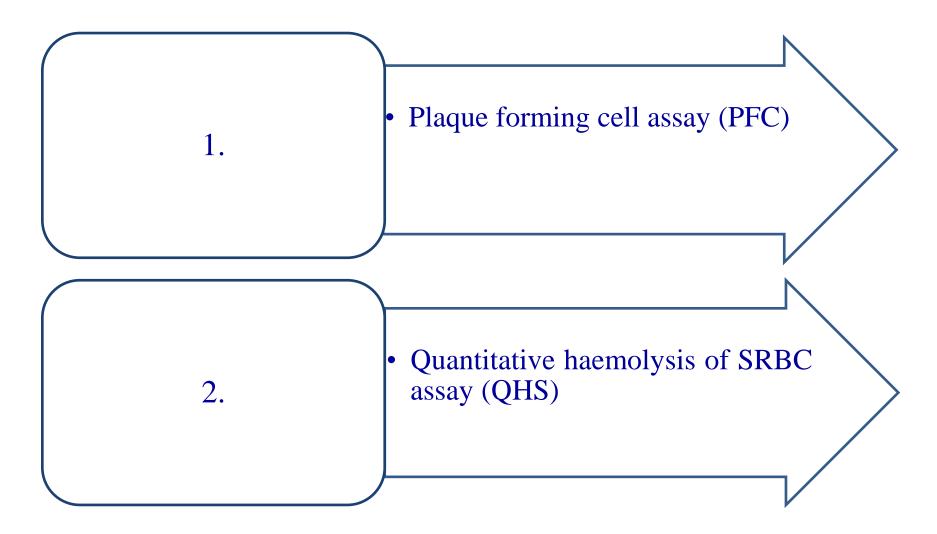
Long chain compounds: n-phenylurethane, n-pentacosane.

Sterol glycoside: β-D-glucoside of (24S)-24-ethylcholesta-4, 22-dien-3-β-ol.

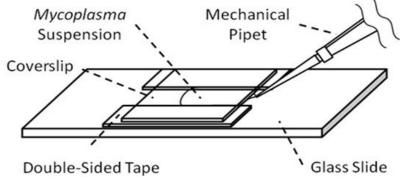
Flavonoids: 7-Hydroxyfrullanolide (7HF), 11α,13-dihydro-3α,7αdihydroxyfrullanolide, 11α,13-dihydro-7α,13-dihydroxyfrullanolide and 11α,13-dihydro-7α-hydroxy-13-methoxyfrullanolide.

Amino acids: glycine, alanine, valine, leucine, cysteine.

Sugars: lactose, raffinose, D-galactose, maltose, D-fructose, D-arabinose, L-rhamnose, and D-glucose³.


- Authentication of crude plant material of *Spheranthus indicus*
- Extraction of *Spheranthus indicus* whole plant
- Approval of protocol from animal ethical committee
- Screening of immunomodulatory activity for methanolic extract of *Spheranthus indicus*

Preliminary phytochemical studies


Chemical test	MeOH SI
Test for flavonoids	++
Test for phenols and tannins	++
Test for alkaloids	-
Test for steroids	+
Test for saponins	+
Test for glycosides	+
Test for carbohydrates	+
Test for amino acids and proteins	+
Test for terpenes	+

where + indicates (present) and - indicates (absent)

In vitro immunomodulatory assays for methanolic extract of S. indicus

Plaque forming cell (PFC) assay of methanolic extract of *S. indicus*

SRBC were prepared at a cell density of 1×10^{8} cells/mL in PBS.

- 1mL SRBC + 0.5 mL of diluted rabbit serum (1:10 diluted with normal saline) was added to 1 mL of spleen cell suspension (PBS).
- Cuningham chambers were prepared using glass slide, coverslips and double- sided tape .
- The chambers should be loaded with a known volume of assay mixture, sealed with petroleum jelly and incubated at 37°C for 1 h.
- The plaques were counted under a light microscope and expressed as PFC per 10^6 spleen cells¹⁹.

Plaque forming cells for methanolic extract of *Sphaeranthus indicus* whole plant

Groups	Treatment	Dose	Plaque forming cells X 10 ⁶
Ι	0.1 mL SRBC + Control	-	540 ±3.395
II	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	100 mg/kg bd.wt.	655.33±4.957 **, b
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	200 mg/kg bd.wt.	620.83±3.70**, a
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	400 mg/kg bd.wt.	563±1.366 ^{**, a}
V	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	678.833±1.701**

Values are expressed as mean± SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01), standard (a=p<0.01, b=P<0.05).

Quantitative haemolysis of SRBC (QHS) assay of methanolic extract of *S. indicus*

- Spleens should be removed and a cell suspension of 1×10^6 cells/mL was prepared in PBS.
- 1 mL of 0.2% SRBC + 1 mL of 10% rabbit serum were mixed with cell suspension and incubated for 1h at 37°C.
- After centrifugation at 3000 rpm for 3 min, optical density of the supernatant was measured at 413 nm using a spectrophotometer¹⁹.

QHS for or methanolic extract of *sphaeranthus indicus* whole plant

Groups	Treatment	Dose	O. D. X 10 X 10 ⁶
I	0.1 mL SRBC + Control	-	0.661±0.0054
II	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	100 mg/kg bd.wt.	0.769±0.01004 ^{**, b}
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	200 mg/kg bd.wt.	0.745±0.0017**, a
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	400 mg/kg bd.wt.	0.707±0.0127**, a
V	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	0.88±0.1124**

Values are expressed as mean \pm SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01), standard (a=p<0.01, b=P<0.05).

In vivo immunomodulatory activities

- Haemagglutination titre test
- Delayed type hypersensitivity
- T- cell population
- Drug induced myelosuppression

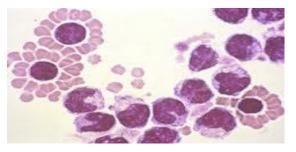
Haemagglutination titer of methanolic extract of S. indicus

- On 0 day animals were immunized with 0.1mL containing 1×10⁸ cells of sheep red blood cells (SRBC) *i.p.*
- Animals were administered with different doses of methanolic extract of *S. indicus* (i.e., 100, 200 and 400 mg/kg bd.wt.) for 7 days.
- On 7th day blood was withdrawn.
- Blood was centrifuged and serum was separated.
- $50\mu l + 50\mu l$ of SRBC and serum was added in titre plate and incubated at 30° C for 1h.
- Serial two fold dilutions were made in titer plate.
- Agglutination was observed²⁰.

Haemagglutination titer test for methanolic extract Sphaeranthus indicus whole plant

Groups	Treatment	Dose	Antibody titre	
Ι	0.1 mL SRBC + Control	-	1.33±0.21	
II	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	100 mg/kg bd.wt.	6.166±0.307**, a	
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	200 mg/kg bd.wt.	4.16.±0.301 **, a	
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	400 mg/kg bd.wt.	3.16±307**, a	
V	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	7.56±0.333**	

Values are expressed as mean± SEM, (n=6). All the groups were compared with control 15 group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01), standard (a=p<0.01). **Delayed type hypersensitivity of methanolic extract of** *S. indicus*


- On 0 day animals were immunized with 0.1mL containing 1×10^8 cells of sheep red blood cells (SRBC) *i.p.*
- The animals were administered with different doses of methanolic extract of *S. indicus* for 7 days (i.e., 100, 200 and 400 mg/kg bd.wt.)
- On 7th day prior to injection, right hind footpad thickness was measured with micrometer screw gauge (Mitutoyo digimatic).
- Then the animals were challenged by injecting 1% SRBC (20 μ L) into the right hind footpad.
- Difference between prior and post challenge footpad thickness was measured as DTH response²¹.

Delayed type hypersensitivity of methanolic extract of Sphaeranthus indicus whole plant

Groups	Treatment	Dose	DTH response	DTH response
			(mm) 24 h	(mm) 48 h
Ι	0.1 mL SRBC + Control	-	0.2453 ±0.0053	0.2413 ± 0.0053
II	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus</i> <i>indicus</i>	100 mg/kg bd. wt.	0.564 ±0.0317 ^{**, a}	0.507 ±0.0236 ^{**, a}
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus</i> <i>indicus</i>	200 mg/kg bd. wt.	0.730±0.0253 ^{**, a}	0.661 ±0.0335 ^{**, a}
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus</i> <i>indicus</i>	400 mg/kg bd. wt.	1.302±0.0158 ^{**, a}	1.166±0.0592 ^{**, a}
V	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd. wt.	1.666 ±0.0435 ^{**}	$1.533 \pm 0.0269^{**}$

Values are expressed as mean± SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01), standard (a=p<0.01).

T- cell population of methanolic extract of *S. indicus*

The animals were administered with different doses of methanolic extract of *S. indicus* for 10 days (i.e., 100, 200 and 400 mg/kg bd.wt.)

- On 11th day blood was withdrawn and anticoagulated with Alsever's solution in test tubes.
- These test tubes should be kept in slant position such that RBC was settled down.
- Supernatant was collected which contains lymphocytes,
- 50 μ L of lymphocyte suspension + 50 μ L of SRBC was incubated for an hour.
- A drop of resultant suspension was taken on glass slide and observed for lymphocytes and rosettes under microscope²².

Lymphocytes for methanolic extract of *Sphaeranthus* indicus whole plant

Groups	Treatment	Dose	Lymphocytes count	Rosettes count
Ι	0.1 mL SRBC + Control	-	131±1.932	10.00±0.365
II	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	100 mg/kg bd.wt.	150.833±1.64 1 ^{**, a}	15.61±0.477 **, a
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	200 mg/kg bd.wt.	159.166±0.09 09 ^{**, a}	17.833±0.65 4**, a
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i>	400 mg/kg bd.wt.	169±1.033**, a	20±0.577 **, a
V	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	171±1.713**	22±0.856**

Values are expressed as mean± SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01), standard (a=p<0.01).

Drug induced myleosuppression of methanolic extract of *S. indicus*

- On 0 day blood was withdrawn from animals and subjected to haematological parameters .
- The animals were administered with different doses of methanolic extract of *S. indicus* for 14 days (i.e., 100, 200 and 400 mg/kg bd.wt.)
- On 11th, 12th and 13th day azathioprine was administered.
- On 14th day blood was again withdrawn and subjected to haematological parameters¹⁴.

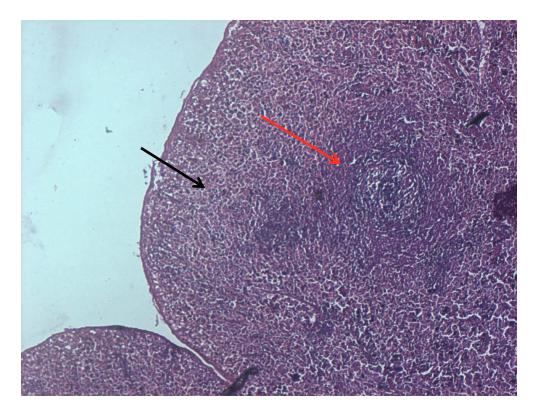
Drug induced myleosuppression - RBC count

Groups	Treatment	Dose	RBC (×10 ⁶ /mm³)count0 day	RBCcount(×10 ⁶ /mm ³)14 th day
Ι	0.1 mL SRBC + Control	-	12.19±0.1816	12.03±0.2305
II	0.1 mL SRBC + Negative control (azathioprine)	2 mg/kg bd.wt.	11.22±0.248	5.61±0.3090 ^{**, a}
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	100 mg/kg bd.wt.	11.35±0.124	9.42±0.468 ^{**, a}
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	200 mg/kg bd.wt.	12.80±0.124	9.60±0.318 ^{**, a}
V	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	400 mg/kg bd.wt.	14.10±0.255	12.69±0.525*,a
VI	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	14.81±0.340	15.14±0.3090**

Values are expressed as mean±SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01, *=p<0.05), standard (a=p<0.01). 21

Drug Induced Myleosuppression - WBC Count

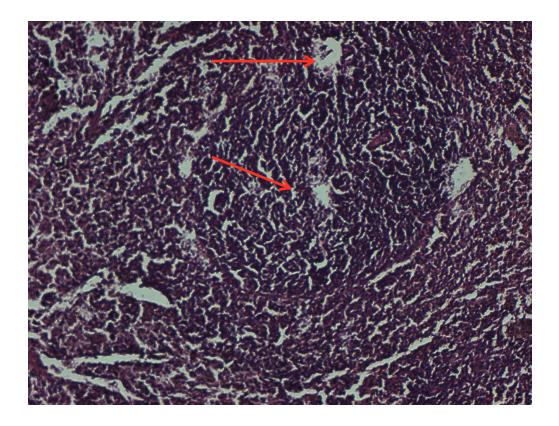
Groups	Treatment	Dose	WBC count (×10 ³ /mm ³) 0 day	WBCcount(×10³/mm³)14th day
Ι	0.1 mL SRBC + Control	-	9.82±0.214	9.68±0.4282
II	0.1 mL SRBC + Negative control (azathioprine)	2 mg/kg bd.wt.	9.01±0.3117	4.75±0.396 ^{**, a}
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	100 mg/kg bd.wt.	9.80±0.301	7.59±0.360 ^{**, a}
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	200 mg/kg bd.wt.	10.24±0.216	8.33±0.208 ^{**, a}
V	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	400 mg/kg bd.wt.	10.47±0.198	9.67±0.207 ^{*, a}
VI	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	11.285±0.22	11.97±0.287**


Values are expressed as mean±SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01, *=p<0.05), standard (a=p<0.01).

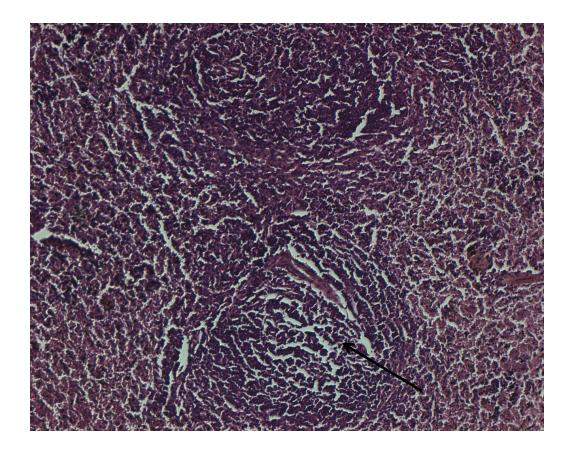
Drug Induced Myleosuppression - Hb count(g/dL)

Groups	Treatment	Dose	Hb count (g/dL) 0 day	Hb count (g/dL) 14 th day
Ι	0.1 mL SRBC + Control	-	10.23±0.274	10.08±0.239
II	0.1 mL SRBC + Negative control (azathioprine)	2 mg/kg bd.wt.	9.39±0.34	6.12±0.194 ^{**, a}
III	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	100 mg/kg bd.wt.	9.91±0.31	8.83±0.274 ^{**, a}
IV	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	200 mg/kg bd.wt.	10.51±0.343	8.93±0.189 ^{*, a}
V	0.1 mL SRBC + Methanolic extract of <i>Sphaeranthus indicus</i> + antagonist (azathioprine)	400 mg/kg bd.wt.	11.23±0.231	9.65±0.327 ^{*, a}
VI	0.1 mL SRBC + Standard (levamisole)	50 mg/kg bd.wt.	11.47±0.187	11.74±0.256**

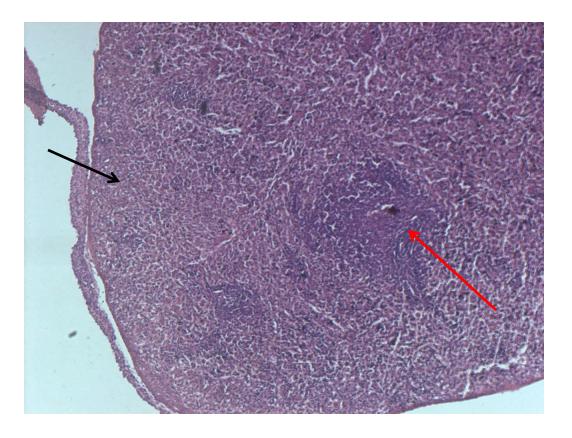
Values are expressed as mean±SEM, (n=6). All the groups were compared with control group and standard group (Dunnett's t- test). Significant values are expressed as control (**=p<0.01, *=p<0.05), standard (a=p<0.01). 23


Histopathology studies

Histopathology of Control Rat Spleen


Spleenic cortex appeared normal – black arrow

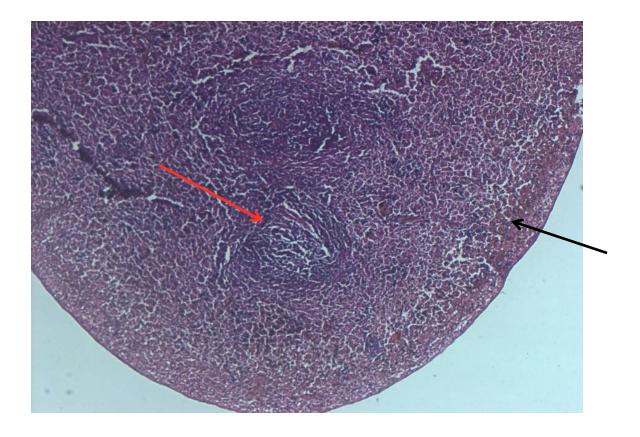
Lymphatic follicles located in the medullary region appeared normal – red arrow


Histopathology of rat spleen treated with 100 mg/kg bd.wt. methanolic extract of *S. indicus*.

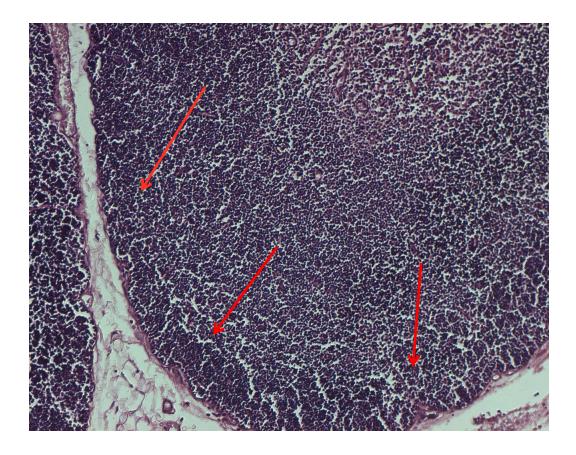
Mild to moderate lymphoid depletion noticed in the lymphatic follicles located in the medullary region of spleen – red arrow.

Histopathology of rat spleen treated with 200 mg/kg bd.wt. methanolic extract of *S. indicus*.

Mild to moderate lymphoid depletion noticed in the lymphatic follicles located in the medullary region of spleen- black arrow.

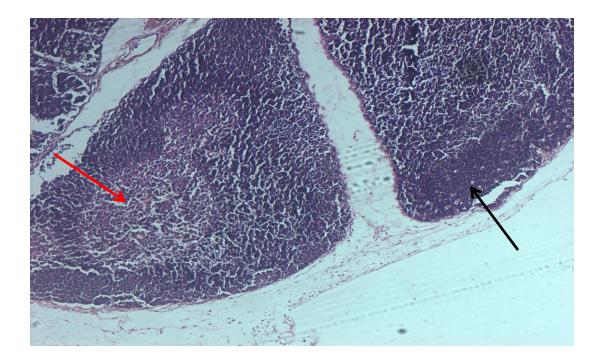


Histopathology of rat spleen treated with 400 mg/kg bd.wt. methanolic extract of *S. indicus*.


Spleenic cortex appeared normal – black arrow

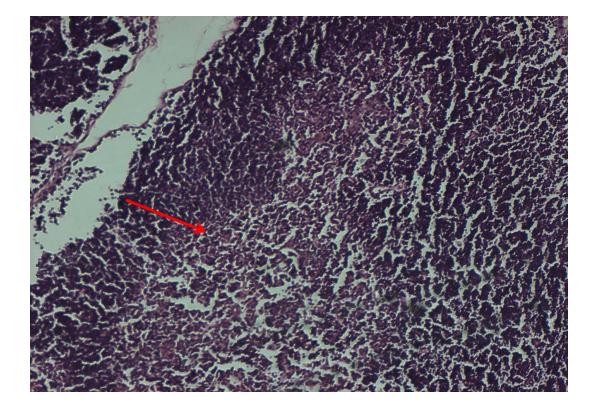
Mild to moderate lymphoid follicular atrophy noticed in few follicles – Red

arrow.

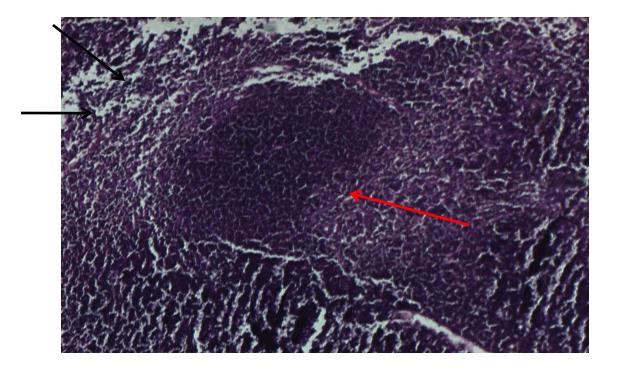


Histopathology of Rat Spleen treated with standard (levamisole 50 mg/kg bd.wt) Spleenic cortex appeared normal and it contain large amount of RBCs- black arrow. Medullary region containing lymphatic follicles showed mild atrophy and lymphoid depletion- red arrow.

Histopathology of Control Rat thymus

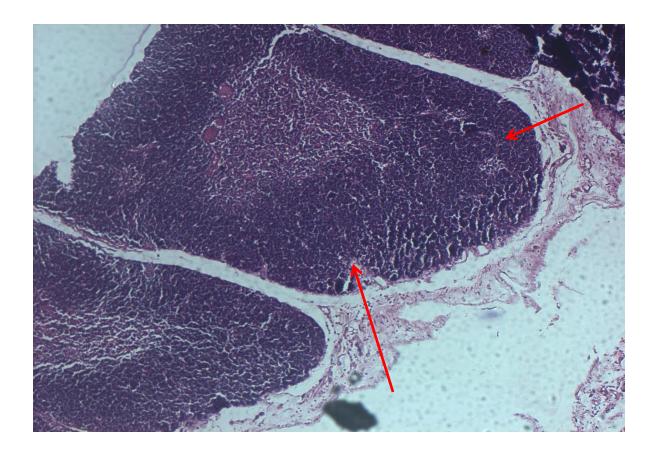

Cortex region of thymus appeared normal [red arrow] it contain pockets/ spread of lymphocytes appeared normal.

Histopathology of rat thymus treated with 100 mg/kg bd.wt. methanolic extract of *S. indicus*.


Thymic atrophy/fibrosis noticed in the medullary region of thymus - Red arrow

Cortex region containing lymphoid pockets with follicles appeared normal- black arrow.

Histopathology of rat thymus treated with 200 mg/kg bd.wt. methanolic extract of *S. indicus*.


Thymic atrophy / fibrosis noticed in the medullary region of thymus– red arrow

Histopathology of rat thymus treated with 400 mg/kg bd.wt. methanolic extract of *S. indicus*.

Medullary region appeared normal – red arrow

Mild to moderate lymphoid cells proliferation or follicular hypertrophy noticed the cortex region of thymus – black arrow.

Histopathology of rat thymus treated with standard (levamisole 50 mg/kg bd.wt.)

Cortex region appeared normal it contain large amount of lymphocytes appeared as follicles- red arrow.

Histopathology Studies

- The histopathology studies of spleen and thymus gland further conformed the immunostimulatory activity of the methanolic extract of *Sphaeranthus indicus*.
- The methanolic extract had shown the significant protective effect from SRBC indicated by mild atrophy and lymphoid depletion in the spleen and thymus gland.
- Even there was moderate follicular atrophy in the cortical region of the thymus gland.

- Its effect was comparable to that of standard levamisole. Earlier studies reported that saponins, flavonoids and glycosides are most likely candidates eliciting the immunostimulatory activity.
- Hence the immunostimulant activity of the methanolic extract of *Sphaeranthus indicus* can be attributed to the phenols, glycosides and saponins present in it.

Conclusions

REFERENCES

References

- Nagarathna PKM, Reena K, Sriram Reddy, Johnson Wesley. Review on Immunomodulation and Immunomodulatory activity of some herbal plants. International Journal of Pharmaceutical Sciences Review and Research. 2013;22(1):223-230.
- Anup KC, Manaswini B, Harekrishna Roy, Sujit Rambhade. *Sphaeranthus indicus* Linn- A phytopharmacological review. International Journal of Drug Formulation And Research. 2010;1(3):113-133.
- Makhija IK, Richard L, Kiriti SP, Saleemullah K, Jessy M and Annie S. *Sphaeranthus indicus*- A Review of its Chemical, Pharmacological and Ethanomedicinal properties. International Journal of Pharmacology. 2011;7(2):171-179.

- Nanda BK, Jena J, Rath B, Behera BR. Analgesic and Antipyretic activity of whole parts of *Sphaeranthus indicus* Linn. Journal of Chemical and Pharmaceutical Research. 2009;1(1):207–212.
- 5. Tiwari B K and Khosa. Hepatoprotective effects of *Sphaeranthus indicus* against acetaminophen induced hepatotoxicity in rats. The Internet Journal of Tropical Medicine. 2009;6(2):26–30.
- Shirwaikar A, Prabhu K S, Punitha I S. *In vitro* antioxidant studies of *Sphaeranthus indicus* (Linn). Indian Journal of Experimental Biology. 2006;44(12):993–996.

- Ritesh Kharkar, Deepak PP, Prashant BS. Antidiabetic activity of *Sphaeranthus indicus* Linn. extracts in alloxan induced diabetic rats. International Journal of Pharmacy and Pharmaceutical sciences. 2013;5(2):524–526.
- Pande VV and Dubey S. Antihyperlipidemic activity of *Sphaeranthus indicus* on atherogenic diet induced hyperlipidemia in rats. International Journal of Green Pharmacy. 2009;3(2):159–161.
- Digambar BA and Guru Prasad Mohanta. Evaluation of neuropharmacological activity of petroleum ether, methanolic and aqueous extracts of flower heads of *Sphaeranthus indicus* in mice. Journal of Applied Pharmaceutical Sciences. 2014;4(4):112-118.

- Mohammad Irfan, Shakeel Ahmed and Manik Sharma. Antimicrobial activity of terpenoids from *Sphaeranthus indicus*. L. Asian Journal of Plant Science and Research. 2014;4(1):1-6.
- Bafna A and Mishra SH. Evaluation of Antioxidant properties of Flower heads of *Sphaeranthus indicus* Linn. Indian Journal of Novel Drug delivery. 2011;3(2):118–124.
- Rajeev Kumar Jha M, Anil B, Rajesh Kumar N. Antidiabetic activity of flower head of petroleum ether extracts of *Sphaeranthus indicus* Linn. Asian Journal of Pharmaceutical and Clinical Research. 2010;3(1):16-19.

- Mallik Arunbha, Nayak Satish. Evaluation of immunomodulatory activity of *Sesbania grandifolia* flowers extract in mice. Indonesian Journal of Pharmacology. 2014;25(4):277-283.
- 14. Switi BG, Dr. Krishna Mohan. Immomodulation activity of methanolic extract of *Thespesia populnea* leaves in wistar albino rats. Asian Journal of Pharmaceutical and Clinical Research. 2011;4(4):99-101.
- 15. Gabhe SY, Tatke PA, Khan TA. Evaluation of the immunomodulatory activity of methanol extract of *Ficus benghalensis* roots in rats. Indian Journal of Pharmacology. 2006;38(4):271-275.

- 16. Bafna AR and Mishra SH. Immunomodulatory activity of methanol extarct of *Sphaeranthus indicus* Linn. Ars Pharmaceutica. 2004;45(3):281-291.
- 17. Saumya SM and Mahaboob Basha P. *In vitro* evaluation of free radical scavenging activities of *Panax ginseng* and *Lagerstroemia speciosa*: A comparative analysis. *International* Journal of Pharmacy and Pharmaceutical Sciences. 2011;3(1):165-169.
- Manmohan Singhal, Arindam Paul, Hemendra Pratap Singh, Sushil Kumar Dubey and Kalpesh Gaur. Evaluation of reducing power assay of chalcone semicarbonates. Journal of Chemical and Pharmaceutical Research. 2011,3(3):639-645.

- Bilal Bin-Hafeez, Rizwanul Haque, Suhel Parvez, Suwarna Pandey, Iqbal Sayeed Raisuddin S. Immunomodulatory effects of fenugreek (*Trigonella foenum graecum* L.) extract in mice. International Journal of Immunopharmacology. 2003;3(2):257–265.
- 20. Surendra Agarwal S, Saurabh Khadase C, and Gokul Telele S. Studies on Immunomodulatory activity of *Capparis zeylanica* leaf extracts. International Journal of Pharmaceutical Science and Nanotechnology. 2010;3(1):887-903.

- 21. SatishVerma K, Asima Shaban, Reena Purohit, Madhvi Chimata L, Geeta Rai and Om Prakash Verma. Immunomodulatory activity of *Withania somnifera* (L.). Journal of Chemical and Pharmaceutical Research. 2012; 4(1):559-561.
- 22. Atul Chandu N, Santhosh Kumar C, Chiranjib Bhattacharjeeb, Subal debnath, and Kamala Kannan K. Studies on Immunomodulatory activity of *Aloe vera* (Linn.). International Journal of Applied Biology and Pharmaceutical Technology. 2011;2(1):19-22.

Certificate

This is certify that the project title "Scheening of immunomodulatory activity of Sphaeranthus indicus Linn: whole plant" has been approved by the IAEC.

Par of Chairman Alember Secretary IAEC: Signature with date 17/02/2015-

Name of CPCSEA nominee:

J. + H - do his 1912415

Chairman/ Member Secretary of IAEC:

CPCSEA nominee:

(Kindly make sure that minutes of the meeting duly signed by all the participants are maintained by Office)

THANK YOU