

Performance Evaluation of WiMAX-Wi-Fi Video Surveillance System

S.C. Lubobya M. E. Dlodlo G. de Jagar A. Zulu

Outline

- Introduction
- WiMAX-Wi-Fi Video Surveillance Design
 - Network Bandwidth and Storage Space
 - QoS Requirement
 - Network Architectures
- Related Work
- Performance Evaluation Methodology
- Results and Discussion
- Conclusion

Introduction

- Traditional surveillance system are mainly wired.
- Wired systems suffer vandalism, affected by rock environment, can not be installed easily in old buildings.
- However, wireless solution should be seen to be complementing the wired systems[1].

WiMAX-WiFi IP Video Surveillance Design

Fig.1: WIMAX- Wind Expo on Multimedia & Fig.1: WIMAX- Wind Expo on Multimedia &

Network bandwidth and storage space

In general the network bandwidth (B) is given
by :

$$B = \frac{MSDU \times FR \times N \times 8}{1024}$$

- Where: MSDU size in Kilobytes is, FR is the frame rate and N is the number of IP cameras.
- The constant 8 is included since there are eight bits per byte.

• The server storage space (^{B_s}) can be calculated :

$B_{S} = \frac{MSDU \times FR \times N \times 8 \times 24 \times 60 \times 60}{1024 \times 1024}$

 B_s is in Gb

Table 1: Qos Requirements for IP Video

<u>Surveillance</u>

Qos parameter	Definition	Acceptable Range	
Throughput	amount of video data that can be transferred to the preferred destination (video server) per unit time (usually bits/second.	Depends on load in bits per second	
load	total bits per second offered to the wireless network [2]	Depends on number of cameras	
Packet loss	number of video packets not reaching the preferred destination [2].	Less than 1% [3]	
End to end delay	time difference between video data departure and arrival [4]	150-200 ms [3,5]	
jitter	absolute value of delay difference between selected packets [6]	Less than 60ms [3]	

Fig.2: WiMAX – Wi-Fi IP video surveillance model

Table 2: Related work

Authors	Surveillance Env.	MAC Protocol	Max Throughput	Network Topology	Video Delivery
Hourdakis <i>et al</i> [7]	highway	802.16	3-30Mbps	star	simulcast
S.Leader [8]	highways	802.11a/ 802.16	20-60Mbps/ 100Mbps	Star/ring	unicast
Neves <i>et a</i> l [9]		802.16e		star	unicast
Guinella <i>et al</i> [10]	fire prevention,	802.16e		star	unicast
Ahmad <i>et al</i> [11,12]		802.16e		star	unicast
Lubobya et al	Bus station, old buildings, shanty compound	802.16d/ 802.11g	3-30Mbps	Star/mesh	unicast

Performance Evaluation Methodology

- OPNET Modeler 17.5 simulation package
- A 1420 Byte, 30 fps compressed Video was used. Varying number of Wi-Fi cameras.
- Simulated the WiMAX -Wi-Fi video surveillance models.
- Throughput Results compared with calculated values while jitter, end to end and packet loss was compared with acceptable QoS range

Results and Discussion

- Throughput is compared to the calculated network bandwidth and load.
- Beyond 10 cameras the packet loss increases above 1%.

Results and Discussion

- Jitter ranges within the acceptable values of below 60ms up to 11 cameras.
- Beyond that extremely high and unacceptable jitter values have been measured

Results and Discussion

- End to end delay must not exceed 200ms for video transmission.
- A similar trend of good results was recorded upto 11 cameras.

Conclusion

- This work proposes and evaluates the WiMAX -Wi-Fi video surveillance models.
- The evaluations is performed in terms of throughput, end to end delay, packet loss and jitter.
- For the simulated scenarios a CPE can effectively connect to 11 cameras beyond which throughput, jitter, packet loss and end to end delay becomes bad

References

- [1] A. C. Caputo, Digital Video Surveillance and Security, Second. butterworth-Heinemann, 2014.
- [2] Mohamed M. Abo Ghazala, Mohamed F. Zaghlou, Mohamed Zahra, "Performance evaluation of multimedia streams over wireless computer networks", International Journal Of Advanced Science And Technology, vol. 13, pp 61-73, 2009.
- [3] Y. Chen, T. Farley, and N. Ye, "QoS Requirements of Network Applications on the Internet," Information-Knowledge-Systems Management, vol. 4, pp. 55–76, 2004.
- [4] Sanjeev Dhawan, "Analogy of promising wireless technologies on different frequencies: Bluetooth, WiFi, and WiMAX", in IEEE proceedings of Second International Conference on Wireless Broadband and Ultra Wideband Communications, 27-30 August, 2007. Sydney, NSW.
- [5] P. E. and P. C. E. Farrukh, "Performance Evaluation of secure video transmission over WiMAX," vol. 3, no. 6, pp. 131–144, 2011.
- [6] Jamil M. Hamodi and Ravindra C. Thool, "Investigate the performance evaluation of IPTV over WiMAX networks" International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.1, January 2013.
- [7] J. Hourdakis, T. Morris, P. Michalopoulos, and K. Wood, "Advanced Portable Wireless Measurement and Observation Station National Technical Information Services," 2005.
- [8] S. Leader, "Telecommunications Handbook for Transportation Professionals The Basics of Telecommunications," p. 287, 2004.
- [9] P. Neves, P. Simões, Á. Gomes, L. Mário, S. Sargento, E. Monteiro, and T. Bohnert, "WiMAX for Emergency Services : An Empirical Evaluation," no. Ngmast, 2007.
- [10] E. Guainella, E. Borcoci, M. Katz, P. Neves, F. Andreotti, and E. Angori, "WiMAX technology support for applications in environmental monitoring, fire prevention and telemedicine," no. I, pp. 125–131, 2007.
- [11] I. Ahmad and D. Habibi, "High Utility Video Surveillance System on Public Transport using WiMAX Technology," 2010.
- [12] I. Ahmad and D. Habibi, "A novel mobile WiMAX solution for higher throughput," Proc. 2008 16th Int. Conf. Networks, ICON 2008, no. October 2005, pp. 1–5, 2008.

Thanks

Questions, comments, suggestions

2015/09/23

Global Summit and Expo on Multimedia & Application