10th Annual World Congress on Pediatrics

Application of induced pluripotent stem (iPS) cells in intractable childhood disorders

Lessons from Dravet synd. patient-derived iPSCs

Shinichi Hirose, MD, PhD

Professor and Chairman Department of Pediatrics *Director* Research Institute for

the molecular pathomechanisms of epilepsy

Fukuoka University Japan

Summary

iPS cells invented by Prof. Shinya Yamanaka

The Nobel Prize in Medicine 2012

DRAVET syndrome (Severe Myoclonic Epilepsy in Infancy)

Incidence : 1 in 40,000.

Refractory epilepsy

OProfound psychomotor delay

Gever sensitive

Na⁺ channel abnormalities

Na⁺ channel (Na, 1.1) Mutations found in DRAVET syndrome

Mutations found in DRAVET All are hetero and Most are De Novo

truncation \triangle splice site \triangle deletion missense

Lossin C Brain & Dev 31: 114-130 (2009) Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

Patient whose skin was used to establish iPS cells **Q29-year-old woman**

- **No perinatal abnormality**
- **Normal development till 6mo.**

• First GTC at 7mo.

OFrequent seizures thereafter

Non-convulsive status epilepticus

 Typical DRAVET Syndrome

 Image: Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

SCN1A mutation of the Patient

MMM

<u>lle Gly Arg lle Leu</u>

£13131414141414141414141414151E1

TTGGCCGAATCCTA

<u>lle Giv Ara lle Leu</u>

{ 13 13 14 14 14 14 14 14 14 14 14 14 14 1E 1E 1

GGCCGAATCCTA

SCN1A mutation of the Patient Non-sense mutation (p.R1645X)

Fukuma et al. Epilepsia 25: 535-542 (2005)

truncation

Patient iPS cells established iPS cells Line A

Patient fibroblast

iPS cells remain un-differentiated Immunostaining for **iPS** cells

iPS cells show Teratoma formation

Ectoderm

Mesoderm Endoderm

Neuronal **Rosettes**

Pigmented Epithelium

Cartilage

Respiratory Epithelium

4

ne

 \mathbf{M}

0

IPS cells retain SCA1A Mutation Ile Gly Arg Ile

p.R1645X (Hetero) Patient iPS cells Line A

Patient iPS cells Line B

Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

lle

Stop

Glv

SCN1A mRNA of Neurons

Higurashi N et al. Mol Brain 6:19 (2013) Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

Neurons derived from iPS

Fibroblasts

iPS cells

Embryoid body

Neurosphere

Neurons

Higurashi N et al. Mol Brain 6:19 (2013) Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

iPS cells develop to neuronal cells

βIII-tubulinneuronsGFAPgliasHoechst 33258nucleus

Higurashi N et al. Mol Brain 6:19 (2013)

IPS Cells Na, 1.1 Expression

Control (day 36)

50~60% of Neurons express Na_v1.1 Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

Na_v1.1 is expressed at Axon Initial Segment (AIS)

GABAergic Neurons are predominant

Control (day 29)

50~60% of Na_v1.1 positive neurons are GABAergic

Higurashi N et al. Mol Brain 6:19 (2013) Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research

Few Glutamatergic Neurons

<1% of Na, 1.1 positive neurons are Glutamatergic Department of Pediatrics, Fukuoka University, Love for children, Medicine for tomorrow, and Research in the second se

Detection of Nav1.1 positive neurons

Promoter Sequence

1.2kb

- : 5'-Untranslated Exon
- : 5'-Untranslated sequence of the first coding exon

Patch clamp (current clamp)

Abnormality in Na_v1.1 (+) neurons DRAVET patient Control rên 20p/ njecti 00b Higurashi N et al. Mol Brain 6:19 (2013) **Depolarization spike attenuated**

Input-output relationship

Dysfunction of inhibitory interneuron

Relative hyper-excitation (seizures)

Na⁺ inhibitors aggravate the unbalance

Other iPS cells studies On **Dravet syndrome**

iPS cells from two patients (IVS14+3A>T and p.Y325X)

Pyramidal and bipolar cell like neurons are both hyper-active (excitatory)

Other iPS study #2 Jiao et al., Hum Mol Genet 201;22:4241-4252

iPS cells from two patients (p.Q1923R and p.F1415I)

Almost all derived neurons are glutamatergic

Findings with **Model mouse** for **Dravet syndrome**

Model mouse for Dravet syndrome

DRAVET Syndrome model mouse showed similar results to ours

150 ms

Depolarization spike attenuated in inhibitory interneuron

Scn1a knock out mice

The pathomechanisms of Dravet syndrome Lessons from patient-derived iPSCs and animal models Na, 1.1 channel expressed mainly in GABAergic inhibitory neurons

ODravet syndrome mutations cause dysfunction of inhibitory interneurons

OThis finding accords with clinical findings with CBZ and LTG

We thank the patient and her parents *for their cooperation for the genetic study and the skin biopsy*

Electrophysiological analysis was performed by Dr. Taku Uchida (Fukuoka) & Dr. Christoph Lossin (UC Davis)

This study was collaborated with Department of Physiology, Keio University School of Medicine Prof. Hideyuki Okano

This study was supported byThe Japan Society for the Promotion of ScienceJapan Science and Technology AgencyThe Ministry of Health, Labor and WelfareThe Japanese Ministry of Education, Culture, Sports, Science and TechnologyJapan

This work has been published (Higurashi N, et al., Mol Brain 2013;6:19)

