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Nonrenewable and Renewable Energy Resources: 

• Based on REN21’s 2014 report, renewable energy contributed by 19% to 

global energy consumption and 22 % to electricity generation 

 

• The annual available wind energy is 25-70 TW 

Introduction 



Global Wind Energy Capacity  

• “Of all the forces of nature, I should 

think the wind contains the largest 

amount of motive power " 
“ Abraham Lincoln (1860)” 

 

• The Wind energy has the fastest 

growing renewable power capacity 
“ Renewables Global Report (2006-2012)” 

• The total worldwide wind capacity 

installed was 360 GW at the end of 

2014, this provided 4% of the 

global electricity demand 
“ World Wind Energy Association 2014 half 

year report (August 2014)” 



Types of Wind Turbines: 

Horizontal Axis Wind Turbines Vertical Axis Wind Turbines 

Single Blade: 

 

- Tower shadow effects 

- Counter weights 

- Less stability 

Two Blades: 

 

- less stability 

- Low strength to wind  

  shocks  

Three Blades: 

 

- Higher strength to wind  

  storms. 

- Less effect of tower  

  shadow. 

- Produces high output 

     Darrieus                H-Rotor               Savonius 



Horizontal Axis Wind Turbines (HAWTs) Farms: 

• An isolated HAWT has the highest 

power coefficient Cp (0.4–0.45) 

Compared to all wind turbines 

 

• 74% of the wind manufacturers 

invest in HAWTs while only 18% 

adopt the Vertical Axis Wind Turbines 

(VAWTs).  

 

• Almost, all the existing wind turbine 

farms consists of HAWTs 

 

• In close proximity to neighboring 

turbines, HAWTs suffer from a 

reduced power coefficient cause by 

the effect of the wake of upstream 

turbines 
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Wake interactions limit Conventional Horizontal Axis Wind 

Turbine Farm performance 



Wind Farm Power Density: 
 

• The power density (P.D.) of a wind farm is defined as the total 

power it can generate per unit land area it occupies 
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Vertical axis wind turbines (VAWTs) are proposed as an alternative to the more 

commonly used horizontal axis wind turbines (HAWTs) due to the potential 

increase in power density that is possible with VAWTs. 

Vertical Axis Wind Turbine Farms 

Experimental researches at CalTech found 

that the power density of H-rotor VAWT 

farms can be increased up to 30 W/m2 by 

optimizing the placement of the turbines 

that enables them to extract energy from 

adjacent turbines wakes 

 

John O. Dabiri, “ Potential order-of-magnitude enhancement of wind farm power density via 
counter-rotating vertical-axis wind turbine arrays,” Journal Of Renewable And Sustainable 
Energy 3: 043104 (2011)  
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 A Numerical study on two dimensional Savonius turbine clusters, showed that a 

mutual enhancement between closely arranged turbines occurs as a function of : 

Xiaojing Sun, Daihai Luo, Diangui Huang and Guoqing Wu,“Numerical study on coupling 
effects among multiple Savonius turbines,” Journal of Renewable and Sustainable Energy 
4: 053107 (2012)  

- Relative direction of rotation. 

- Gap Distance between rotors (S). 

- Relative phase angle between the rotors: 

                                               = 1 - 2 



10/15/2015 14 

Motivation and Problem Definition 

Motivation: 
 

Previous studies showed that VAWTs in close separation distances mutually 

enhance their power coefficients resulting in higher power output for 

individual turbines and higher power density if arranged in a wind farm 

 

Problem (1): 
 

All the previous studies did not extended the results for efficient layouts of 

VAWTs to develop larger efficient farms that generate the highest possible 

power output keeping a high power density 

 

Problem (2): 
 

Using non isolated turbines in a farm will make the prediction of a farm 

performance to become a complicated job as each turbine will have a 

different performance 
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Contribution to Knowledge 

Solution (1): 
 

This study introduces the idea of the efficient VAWT cluster as a building unit 

for an efficient VAWT farm that generates the highest possible power using the 

mutual enhancement between individual turbines and has a high power density 

compared to isolated counter-part 

 

 

Solution (2): 
 

Using the efficient cluster as a building unit for the development of efficient 

and patterned VAWT farms which have the same geometric topology of the 

cluster provides the capability of predicting the performance of a farm having                  

a geometric progression of the efficient cluster. 
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Case Study (I) 

Savonius Wind Turbine 
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• The Savonius wind turbine was invented 

1929 
 

• It is has a Simple Construction 
 

• It is a drag-type device 
 

• Consists of two or three buckets 
 

• It has self starting capability 
 

• Low noise levels due to operation at low 

tips speed ratio 
 

• Savonius turbines have low efficiencies 

15-20% 

 

 

 

Savonius Wind Turbine  

       A. Shigetomi, Y. Murai, Y. Tasaka, Y. Takeda, “Interactive 
flow field around two Savonius turbines,” Renewable 
Energy 36: 536-545, (2011)   
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Computational Domain: 

1 

2 

Grid Generation:  

The grid structure consists of a non conformal mesh with 

unstructured triangular elements generated using 

ANSYS meshing.  

 

An inflation of 10 levels of quad. cells is imposed to 

account for the boundary layer with a maximum thickness 

of 1 mm to achieve a y+ < 1 as required by the transition 

SST turbulence model [36, 37].  
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Numerical Model Validation: 
 

 

Three models has been checked: 
 

 - K-e model 

 - K-w SST model 

 - Transition SST model 

 

 

The transition SST turbulence model 

shows closer agreement to the 

experiments data in the numerical results 

for: 

 

-   Static torque coefficient at different  

     azimuth angles () 

 

-   Power coefficient at different tip speed  

    ratios () 

 

 

The maximum power coefficient: 

              Cpmax = 0.23 at  = 1 
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Velocity Contours:     Single Savonius Turbine 
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Vorticity Contours:     Single Savonius Turbine 
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Flow Pattern around a Single Savonius Rotor 

The flow patterns around the rotor are identified 

and found comparable to the experimental data: 

 
 Flow (I): Coanda flow (Attached to the 

advancing blade convex side). 

 

 Flow (II): Dragging flow (from the advancing 
blade convex side to the returning blade 
concave side). 

 

 Flow (III): Overlap flow though the 
overlapping area. 

 

 Flow (IV): Stagnation flow from upstream to 
the returning blade convex side. 

 

 Flow (V): Shedding vortex at the advancing 
blade tip. 

 

 Flow (VI): Shedding vortex from the returning 
blade tip. 

       Nakajima, M., IIO, S., Ikeda, T., Performance of double-step Savonius rotor for environmentally 
friendly hydraulic turbine. Journal of Fluid Science and Technology 3, (2008) 
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3D Validation for a Single Savonius Turbine 

DES 

Trans. 

SST 

Grid 

 Level 

No. of  

Cells 

Cm  

Transition SST 

Cm 

DES 

1 752,361 0.1461 0.1806 

2 1,999,508 0.1561 0.1909 

3 4,204,210 0.1557 0.1901 
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Transition SST model in the 3D Solution 

under predicted the single turbine 

performance compared to experimental data, 

this results are in consistence with the 

literature review on 3D solutions 

 

To obtain better rsults, detached eddy 

simulation (DES) model is used for the flow 

simulation, the obtained results are closer to 

the experimental data for different TSR 

 

The max. difference between DES and 

experimental data is about 15% 
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Numerical Solution of Two Savonius Wind 

Turbine Clusters 

The development of an efficient cluster requires the study of different 

possibilities of multiple turbine cluster 

 

Two Co-rotating and Counter-rotating turbine clusters in parallel and 

oblique configurations are numerically simulated 

Parallel Configurations Oblique Configurations 

       Xiaojing, S., Daihai, L., Diangui, H., Guoqing, W. Numerical study on coupling effects 
among multiple Savonius turbines. Journal of Renewable and Sustainable Energy 4: 
053107,  2012 
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1- Two Parallel Co-Rotating Savonius Turbines: 
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Rotor (1) has higher efficiency enhancement than Rotor (2) due to the direction of 

rotation 

 

Cpavg max is 0.3 at 0.2D gap distance enhancement of 30% higher than isolated 

turbines 

 

Reaches isolated turbine performance placed at approximately 5-6 D 
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Cpavg max is 0.3 at 0.8D gap distance Cpavg max is 0.26 at 0.8D gap distance 

Case (A) Case (B) 

Wind Direction 

Wind Direction 

2- Two Parallel Counter-Rotating Savonius Turbines 
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Comparison Between Co- and Counter-Rotating Two Parallel Turbines  

case (B) for counter-rotating rotors at a relative phase angle 30o is the most 

efficient for two parallel counter-rotating Savonius rotors, where the inward 

buckets are advancing buckets  
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Velocity Contours: Two Parallel Counter-Rotating Savonius Turbines 
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Vorticity Contours: Two Parallel Counter-Rotating Savonius Turbines 
 



3- Two Oblique Co-Rotating Savonius Turbine Clusters 

1 

2 

1 

2 
Cpavg max is 0.26 at 1.0 D 

Cpavg max is 0.3 at 0.2 D 

Case (A) 

Case (B) 
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Case (C) 
Case (D) 
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Numerical Simulation of Three Turbine Savonius Clusters 

Co-Rotating 

 Cluster 

 

Cp = 0.29 

Hybrid 

 Cluster 

 

Cp=0.3 

Co-Rotating 

Hybrid 

Comparison 
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Velocity Contours: Three Co-Rotating Turbine Cluster 
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Vorticity Contours: Three Co-Rotating Turbine Cluster 
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Co-Rotating Three turbine Cluster has an 
enhancement in average power coefficient  of 26 % 

compared to  isolated turbines 

Three Turbine Cluster Performance Confirmation 

Isolated 

Rotor 

Rotor 

(1) 

Rotor 

(2) 

Rotor 

(3) 

Power Coefficient (Cp) 0.23 0.26 0.327 0.289 

Enhancement % Compared to 

Isolated Rotor 
13% 42% 25% 

Ratio Compared to Rotor (1) 1 1.23 1.07 

The results show that the ratio 1:1.2:1 between 
the power coefficients of the three rotors is 
consistent for >0.6 
 
 

We focus here on the flow field at >0.6 in order to 
observe the flow-inducing action of the turbine 
revolutions rather than the flow-stagnating action 
at lower tip-speed ratios 

At =1, Cpmax = 0.286 



  The efficient co-rotating three turbine cluster is  
      used as a building unit for an efficient wind  
      turbine farm 

 
   Using the same triangular topology of the three  
       turbine cluster the farm is developed as a  
       geometric progression of the cluster  
 
 

 
  Numerical simulations of farms that consist of nine  
     and twenty-seven turbines are performed to  
     confirm the pattern and the same enhancement  
     ratio of the three turbine cluster and the geometric   
     progression 

Development of Patterned Savonius Wind 

Turbine Farms 
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Development of Patterned Vertical Axis Wind Turbine Farm 
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Nine Savonius Wind Turbine Farm 

The nine turbine farm is triangular and 

has the same topology of the three 

turbine cluster 

 

Each vertex of the triangle has a three 

turbine cluster  

 

The domain, solver setting and turbulence 

model are similar to that of the three 

turbine cluster simulation 

 

The same grid topology is used, this 

results in a grid having a number of cells 

equal to 817,253 cells for the nine turbine 

farm simulation 

 

The simulation time is about 32 hours 
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Cluster A  Isolated Rotor Rotor (1) Rotor (2) Rotor (3) 

Power Coefficient (Cp) 0.23 0.24 0.3 0.26 

Enhancement % Compared to 

Isolated Rotor 
4% 30% 13% 

Ratio Compared to Rotor (1) 1 1.25 1.08 

Cluster B  
Isolated Rotor Rotor (4) Rotor (5) Rotor (6) 

Power Coefficient (Cp) 0.23 0.31 0.36 0.32 

Enhancement % Compared to 

Isolated Rotor 
34% 56% 39% 

Ratio Compared to Rotor (4) 1 1.16 1.03 

Cluster C Isolated Rotor Rotor (7) Rotor (8) Rotor (9) 

Power Coefficient (Cp) 0.23 0.26 0.32 0.27 
Enhancement % Compared to 

Isolated Rotor 
13% 39% 17% 

Ratio Compared to Rotor (7) 1 1.23 1.03 

Cluster (A) Cluster (B) Cluster (C) 

Power Coefficient (Cp) 0.26 0.33 0.28 

Ratio Compared to Cluster (A) 1 1.23 1.04 

Numerical Results for the Nine Savonius 

Wind Turbine Farm 

The ratio between Cp of the clusters (A:B:C) is 1:1.2:1 
 

The ratio between Cp of individual turbines is (1:1.2:1)  
 
 

The average power coefficient achieved by the 

developed nine turbine farm at =1 is 26% higher than 

that of isolated nine turbine farm A 

B 

C 

Cpavg max = 0.29 
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Predicted Results

Calculated Results

The nine turbine farm is patterned, the performance of the farm can be 

predicted by simulation of a three turbine cluster 

 

Using the ratio 1:1.2:1 and the results of the three turbine cluster, the nine 

turbine farm efficiency is predicted and compared to the calculated results 

 

The error in the predicted average power coefficient (Cp=0.3) of the farm 

compared to the calculated value (Cp=0.292) is less than 2% 
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Velocity Contours: Co-Rotating Nine Savonius Turbine Farm 
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Vorticity Contours: Co-Rotating Nine Savonius Turbine Farm 
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Twenty Seven Savonius Wind Turbine Farm Simulation  

The 27 turbine farm is triangular and has the same 

topology of the three turbine cluster 

 

 

Each vertex of the triangle has a nine turbine farm 

 

 

The domain, solver setting and turbulence model 

are similar to that of the three turbine cluster 

simulation 

 

 

The same grid topology is used, this results in a grid 

having a number of cells equal to 2,751,759 cells for 

the 27 turbine farm simulation 

 

 

The simulation time is about 120 hours 
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Total Power (watt) Ratio Compared to Cluster (A) 

Cluster (A) 170 1 

Cluster (B) 208 1.22 

Cluster (C) 182 1.07 

Total Power (watt) Ratio Compared to Cluster (D) 

Cluster (D) 214 1 

Cluster (E) 233 1.09 

Cluster (F) 226 1.05 

Total Power (watt) Ratio Compared to Cluster (A) 

Cluster (G) 181 1 

Cluster (H) 233 1.27 

Cluster (I) 195 1.06 

Cluster (I) Cluster (II) Cluster (II) 

Total Power (watt) 567 680 604 

Ratio Compared to Cluster (I) 1 1.2 1.06 

Numerical Results for the Twenty-

Seven Savonius Wind Turbine Farm 

The ratio between Cp of individual turbines is (1:1.2:1)  
 

The ratio between average Cp of the clusters is 1:1.2:1 
 

 
 

The ratio between average Cp of the nine turbine 

farms I, II and III  is 1:1.2:1 
 

The average power coefficient achieved by the 

developed nine turbine farms at =1 is 39% higher 

than that of isolated nine turbine farm 

The average power achieved by the 

developed twenty-seven turbine farm is 

0.32 at  =1 

I 

II 

III 
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The 27 turbine farm is patterned, this means that the performance of the farm can 

be predicted by simulation of only three turbines. 

 

Using the ratio 1:1.2:1 and the results of the simulation of the three turbine 

cluster, the 27 turbine farm efficiency is predicted and compared to the calculated 

results. 

 

The error in the predicted average power coefficient (Cp=0.326) of the farm 

compared to the calculated value (Cp=0.325) is less than 0.4% 
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Power and Power Density of the Developed VS Isolated Farms 

(One meter Diameter and One meter Height Turbines)  

Power (W/m) Enhancement 

In  

Power 

Power Density 

(W/m2) 

Enhancement 

In 

Power Density Developed Isolated Developed Isolated 

3 

Turbines 
182 145 26% 17 13 1.3 times 

9 

Turbines 
554 435 26% 10 1.9 7 times 

27 

Turbines 
1841 1304 39% 4.5 1.5 4 times 
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Conclusion 

•   Multiple Vertical axis wind Turbines arranged in closely configuration  

    show enhancement in their performance compared to their isolated  

    counter parts. 

 

 

•   The close arrangement enables to construct farms of higher power  

    densities compared to conventional aligned isolated farms 

 

 

•   Two types of turbines VAWTS are numerically studied: 

                   Savonius and Darrieus turbines 

 

 

•   The enhanced performance is numerically studied for two parallel and  

    oblique co-rotating and counter rotating configurations 

 

 

•   The numerical results are used to develop an efficient triangular three  

     turbine cluster 
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•  The performance of the Savonius three Turbine cluster is higher than  

   three isolated turbines by 26% , and its power density is  1.5 times the  

   isolated turbines at =1 

 

 

•  The performance of the Darrieus three Turbine cluster is higher than three  

    isolated turbines by 30% , and its power density is 4 times the isolated  

    turbines at =2.8 

 

 

•  The clusters performance is confirmed at different tip speed ratios, and  

    the power ratio between the turbines is 1:1.2:1 for the Savonius cluster     

    and 1:1.1:1 for the Darrieus cluster 

 

 

•   The efficient three turbine clusters are used to build efficient patterned  

    Vertical axis wind turbine farms having the same geometric topology of  

    the cluster and the same power ratio enhancement 

 

 

•  The pattern is confirmed by solving 9 and 27 Savonius turbine farms and  

   a 9 turbine Darrieus farm 
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•  The developed farms are patterned and have the same power ratios of the  

    three turbine clusters 

 

 

•  The power density of the Savonius nine turbine farm is about 7 times a nine  

   isolated turbine farm, and the power density of the twenty-seven turbine  

   farm is 4 times a twenty-seven isolated turbine farm 

 

 

•  The power density of the Darrieus nine turbine farm is more than 13 times a  

    nine isolated turbine farm 

 

 

•  The advantage of the patterned farm appears is the power ratio achieved by  

    the clusters and confirmed by the farms 

 

 

•  This power ratio is used to predict the performance of larger farms with the  

    same topology to save processing time and man power 
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•  The developed farms have smaller structure size, wind farm signature,  

    material and manufacturing costs than conventional HAWTs 

 

•  The developed farms are simpler in logistics of installation, operation and  

    maintenance  

 

•  The developed farms are  safer for birds, produce lower noise, and have a  

    lower impact on radar signals 

 

•  A preliminary analysis of the mean velocity field around the turbine blades  

   at different tip speed ratios shows a velocity distribution close to the  

   structure of a Rankine vortex 

 

•  A future work will be considered for numerical modeling of the Darrieus  

   turbine as a combination of the free stream with a Rankine vortex. 

 

•  The solution of adjacent vortices can be used to determine the    

   performance of closely oriented Darrieus turbines  and represented a farm  

   by a group of vortices 



53 

Summary of Savonius Turbine Clusters 
(Single Turbine Cp= 0.23 at =1) 

Co-Rotating Counter-Rotating Farms 

Two Turbines 

Three 

Turbines 

Two Turbines 

Three 

Turbines 

Nine 

Turbines 

27 

Turbines 

Parallel Oblique Parallel Oblique 

Case 

A 

Case 

B 

Case 

A 

Case 

B 

Case 

C 

Case 

D 

Cp 0.3 0.26 0.32 0.29 0.26 0.3 0.35 0.25 0.3 0.3 0.32 

Gap 

Distance 
0.2D 1.0D 0.2D 2.2D 0.8D 0.8D 0.4D 1.6D 2.2D 
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Force Analysis on Darrieus Turbine 
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Variation in Angle of Attack Vs Tip Speed Ratio 
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Transition in VAWTs 
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Effect of Turbine Radius on The Power Coefficient 

At low tip speed ratios there is no effect for the turbine radius on the Power Coefficient 
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Induced Speed Vs Azimuth Angle 
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The performance of a single Savonius turbine utilizes the interactive 

flow between the two blades: 

 

1) The flow attachment to the convex surface of the advancing blade 

produces a low-pressure region above it to pull the blade in torque-

adding direction, i.e. the lift effect at a low tip-speed ratio 

 

3)   A large vortex is slowly shed behind the returning blade, which 

produces low-pressure downstream of the advancing blade.  

Why the Savonius turbine 

cannot be modeled with simple momentum theory 
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Second Row 

Case A Case B 
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Vorticity equation 
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Two-dimensional flow equation 
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The fraction by which the axial component of velocity is reduced is known as the 

axial induction factor (a).  

 

If the free stream velocity is U∞ and the axial velocity at the rotor plane is U1 , then 

the axial induction factor is,  

Axial Induction Factor 

The power W extracted by the wind turbine is related to the axial induction factor (a): 
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The tangential induction factor (a’) which is due to rotation of the flow in the 

wake.  

 

 

 

 

where Ω is the angular speed of the rotor and ω is the angular velocity at 

which the wake rotates.  

 

Tangential induction factor  
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Wall Functions vs. Near-Wall Model 

Numerous experiments have shown that the near-wall region can be largely 

subdivided into three layers. In the innermost layer, called the “viscous sub-

layer”, the flow is almost laminar, and the (molecular) viscosity plays a 

dominant role in momentum 

“wall functions” are used to bridge the viscosity-affected region between 

the wall and the fully-turbulent region. 
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Dimensionless wall distance (y plus) 

the local kinematic viscosity of the fluid  

friction velocity at the nearest wall 

the distance to the nearest wall  

wall spacing 

http://www.pointwise.com/yplus/ 

http://www.cfd-online.com/Wiki/Kinematic_viscosity
http://www.cfd-online.com/Wiki/Friction_velocity


static Rotating 

Intermittency 

Contours 

Average Intermittency on the blades   0.9 Average Intermittency on the blades   0.4 

For point surfaces, the value is 

interpolated from all the mesh 

nodes of the cell containing 

the point 



K-w (SST model) full turbulent 

Contours of Turbulence Intensity  

K-w (Trans SST model) 

Magnification 

of Transition 

Position 
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Experimental Data Correction 
 

 

An object placed in a wind tunnel produces some "tunnel blockage"  

 

This causes the local wind velocity in the test section to increase.  

 

This increase has to be accounted for by determining a tunnel blockage factor (e)  

 

The total tunnel blockage correction be determined by applying the following 

equation: 

Pope, A. and Harper, J.J., Low Speed Wind Tunnel Testing, John Wiley, New York, 1966. 
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