Nanometronomic treatment of breast cancer with Doxorubicin loaded H-Ferritin prevents drug resistance and circumvents cardiotoxicity
Cancer chemotherapy

Treatment of approximately 50% of human cancers includes the use of chemotherapy.
MTD vs. LDM
drug administration

MTD = maximum tolerated dose
LDM = low-dose metronomic

I. Kareva et al. Metronomic chemotherapy: An attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. *Cancer Lett.* 2015, **358**, 100-106
Anti-angiogenic mechanism of LDM

Metronomic chemotherapy: Possible new directions?

Adapted from:
N. André et al. Has the time come for metronomics in low-income and middle-income countries? *Lancet Oncol.* 2013, 14, e239-e248

“NANOMETRONOMIC” (LDNM) CHEMOTHERAPY
H-Ferritin nanocages (HFn)

- Easily produced as a recombinant protein in *E. coli*
- Polymer of 24 subunits of Heavy (H) or Light (L) ferritin chain which self-assembles in a cave sphere structure of 12 nm
- **Thermal** (≤70 °C for 15 min) and **chemical stability** (Denaturants such as urea or guanidinium chloride)
- Low immunogenicity and high stability in biological fluids
- **Controlled disassembly** (pH-dependent), which makes HFn easily loaded with drugs
- Recognizes with high specificity (95%) and high sensitivity (98%) the transferrin receptor 1 (TfR1), which is overexpressed by cancer cells

Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S. Pharmacological Research. 2016, accepted
HFn promotes DOX nuclear translocation

HFn-DOX mediates self-triggered nuclear delivery of DOX increasing:
- Drug cellular uptake
- Nuclear accumulation
- Efficacy in blocking proliferation and in inducing cell death and DNA damage

HFn-DOX is a good candidate for LDNM chemotherapy?
HFn uptake in 4T1-L Breast Cancer cells

Murine 4T1-L cell line as breast cancer model:

- high level of proliferation, migration and invasiveness
- DOX-inducible expression of MDR-1 (or P-glycoprotein)
- stable luciferase expression

Dose-dependent recognition of tumor cells

Internalization:

- HFn was partly compartmentalized in early endosomes and partly free in the cytosol
- Absence of interaction with lysosomes, Golgi apparatus and recycling endosomes. HFn did not follow any lysosomal degradation, elimination or recycling
HFn activity in 4T1-L BC cells

- Free DOX reduced cell proliferation for 24 h only, consistent with onset of chemoresistance
- Proliferation was arrested for at least 72 h after treatment with HFn-DOX

HFn promotes DOX nuclear translocation

- Free DOX reduced cell proliferation for 24 h only, consistent with onset of chemoresistance
- Proliferation was arrested for at least 72 h after treatment with HFn-DOX

HFn in vitro:
- Improves chemotherapeutic efficacy
- Enhances tumor cell selectivity
- Circumvents MDR mechanisms

Good candidate for LDNM chemotherapy

15.2-fold higher concentration of DOX inside 4T1-L nucleus within 3 h (HFn-DOX vs free DOX)
AlexaFluor660-labeled HFn (5 μg kg⁻¹) i.v. injected by tail vein and imaged by live fluorescence

Tumor targeting

- Epifluorescence over time:
 - 1 h: Low fluorescence
 - 2 h: Increased fluorescence
 - 24 h: Highest fluorescence
 - 48 h: Decreasing fluorescence

- Averaged tumor Epif intensity (psec/cm²/μW/cm²) 10⁻⁷

Biodistribution

- Renal excretion:
 - 1 h: Minimal fluorescence
 - 2 h: Increased fluorescence
 - 24 h: Highest fluorescence
 - 48 h: Decreasing fluorescence

Renal excretion

- Urine mean fluorescence intensity (a.u.)
 - 1 h: High intensity
 - 2 h: Medium intensity
 - 24 h: High intensity
 - 48 h: Decreasing intensity
LDNM treatment of 4T1-L tumor bearing mice with HFn-DOX

4T1-L cells implanted at day 0

Our metronomic setting: drug administration = 1.24 mg DOX kg\(^{-1}\) at day 5, 9, 13 and 17

In vivo

HFn-DOX in metronomic setting significantly slow tumor progression increasing apoptosis in tumor tissue
LDNM inhibits neo-angiogenesis and prevents drug resistance

Tumor angiogenesis

Induction of MDR-1 expression

In vivo
LDNM overcomes DOX cardiotoxicity and systemic dysfunction

Cardiotoxicity: morphological evaluations

Cardiomyocyte area (pixels)

Transmission Electron Microscopy of Heart tissue

Cardiotoxicity: functional evaluations

Membrane potential (a.u.)

Hepatic and renal functionalities

HFn-DOX ~ placebo
Conclusions

IN SUMMARY...

Developed highly aggressive metastatic BC model based on murine 4T1-L cells to monitor tumor progression and spread

- DOX monotherapy **does not STOP** tumor progression
- LDNM chemotherapy ⇒ reappraised **key role of targeted action** on cancer cells?
 ⇒ metronomic administration associated with cell nucleus targeting could **circumvent DOX resistance** and **enhance cancer cell killing**
 - Mazzucchelli et al., manuscript in preparation
 ⇒ LDNM chemotherapy has the potential to combine the advantages of both MTD and LDM

PERSPECTIVES...

- elucidate the individual contributions of targeted therapy, immune system activation, and neo-angiogenesis inhibition in the strong enhancement of antitumor efficacy of HFn-DOX
Acknowledgements

Center of Electron Microscopy for Nanotechnologies
Applied to Medicine
Department of Biomedical and Clinical Sciences «L. Sacco»
University of Milan
Medicinal Chemistry Unit
Department of Biomedical and Clinical Sciences «L. Sacco»
University of Milan
Prof. Pierangela Ciuffreda
Dr. Roberta Ottria

Pathology Unit
«L. Sacco» University Hospital
Milan
Prof. Manuela Nebuloni
Dr. Erika Longhi

Nanomedicine Laboratory
Department of Biomedical and Clinical Sciences «L. Sacco»
University of Milan
Prof. Fabio Corsi MD
Dr. Luisa Fiandra
Dr. Marta Truffi
Matteo Monieri
Raffaele Allevi

NanoBioLab
Department of Biotechnology and Biosciences
University of Milan-Bicocca
Dr. Davide Prosperi
Prof. Paolo Tortora
Michela Bellini

NanoMeDia Project (Regione Lombardia)
Fondazione Regionale per la Ricerca Biomedica