SHOULD THERAPEUTIC AGENTS FOR SEPSIS TARGET THE GLYCOCALYX?

Sir Ganga Ram Hospital

Dr. Seema Bhargava Senior Consultant & Chairperson Department of Biochemistry & Professor, GRIPMER Sir Ganga Ram Hospital New Delhi, India

Ganga Ram Institute of Postgraduate Medical Education and

Systemic Inflammatory Response Syndrome (SIRS)/Sepsis

ACCP/SCCM Consensus Conference (1992) *Crit Care Med 1992; 20:864–874 Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.*

Criteria for Dx of SIRS

Core temperature >38.3°C / <36°C

• Heart rate >90 bpm / >2SD

 Respiratory rate >30 bpm or PaCO2 <32 mm Hg

 WBC count >12,000 cells/mm³ or
 <4,000 cells/mm³ or
 >10% immature neutrophils

SIRS, Sepsis, Severe Sepsis and Septic shock

ACCP/SCCM Consensus Conference (1992)

Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20:864–874

SOFA Score

Variables/Points	1 1	2	3	4
Neurological Coma Score: Glasgow	13-14	10-12	6-9	× 6
Pulmonary PaO ₂ (mmHg) / FiO ₂	< 400	< 300	< 200 with respiratory support	< 100 with respiratory support
Cardiological Mean Systolic Atterial Pressure (mmHg	< 70	Dopamine ≦5 or Dobutamine (whatever dose)	Dopamine > 5 or Adrenaline = 0.1 or Noradrenaline = 0.1	Dopamine > 15 or Adrenaline > 0.1 or Noradrenaline > 0.1
Renal Blood creatinine µmol/L (mg/L) or Diuresis mL/day	110-170 (1.2-1.9)	171-299 (2.0-3.4)	300-440 (3.5-4.9) or < 500	> 440 (> 5.0) or < 200
Haematological Platelets 10 /L	< 150	< 100	< 50	< 20
Hepatic Blood bilirubin µmol/L (mg/dL)	20-32 (1.2-1.9)	33-101 (2.0-5.9)	102-204 (6.0-11.9)	> 204 (> 12.0)

Crit Care Med 1998;26:1793-1800

fppl.com

The APACHE II Score

Physiologic Variable		High Abr	normal Ra	nge			Low Ab	normal Rang	e
	+4	+3	+2	+1	0	+1	+2	+3	+4
Rectal Temp (°C)	≥41	39-40.9		38.5-38.9	36-38.4	34-35.9	32-33.9	30-31.9	≤29.9
Mean Arterial Pressure (mmHg)	≥160	130-159	110-129		70-109		50-69		≤49
Heart Rate	≥100	140-179	110-139		70-109		50-69	40-54	≤39
Respiratory Rate	≥50	35-49		25-34	12-24	10-11	6-9		≤5
Oxygenatation a)FIO₂≥0.5 record A-aDO₂ b)FIO₂<0.5 record PaO₂	≥500	350-499	200-349		<200 PO ₂ >70	PO ₂ 61-70		PO ₂ 55-60	PO2<55
Arterial pH	≥7.7	7.6-7.69		7.5-7.59	7.33-7.49		7.25-7.32	7.15-7.24	<7.15
HCO ₃ (mEq/l)	≥52	41-51.9		32-40.9	22-31.9		18-21.9	15-17.9	<15
K (mEq/l)	≥7	6-6.9		5.5-5.9	3.5-5.4	3-3.4	2.5-2.9		<2.5
Na (mEq/l)	≥100	160-179	155-159	150-154	130-149		120-129	111-119	≤110
S. Creat (mqm/dl)	≥3.5	2-3.4	1.5-1.9		0.6-1.4		<0.6		
Hematocrit (%)	≥60		50-59.9	46-49.9	30.45.9		20-29.9		<20
TLC (10%cc)	≥40		20-39.9	15-19.9	3-14.9		1-2.9		<1
GCS									

Age -score	GCS:	
$<44 \rightarrow 0$ $45-54 \rightarrow 2$ $55-64 \rightarrow 3$ $65-74 \rightarrow 5$ ≥75 → 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5 8 11 JAMA 1993;270(24):2957-2963

fpp1.com

Dilemmas in sepsis

- Early diagnosis
- Segregation into sepsis and SIRS
- Differentiation between sepsis, severe sepsis and
 - septic shock
- > Prognosis
- Increased morbidity and mortality
- Refractory hypotension and organ failure

Publication

 Impact Factor: 2.5
 Journal of Critical Care 30 (2015) 218.e7-218.e12

 Contents lists available at ScienceDirect
 Journal of Critical Care

 Journal of Critical Care
 Journal homepage: www.jccjournal.org

Procalcitonin as a rapid diagnostic biomarker to differentiate between culture-negative bacterial sepsis and systemic inflammatory response syndrome: A prospective, observational, cohort study

Dimple Anand, MSc^a, Sabari Das, PhD^a, Seema Bhargava, MD, PhD^a, Lalit Mohan Srivastava, PhD^a, Ashish Garg, MD^b, Niraj Tyagi, MD^b, Saurabh Taneja, MD^b, Sumit Ray, MD^{b,*}

^a Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, 110060, India
^b Department of Critical Care and Emergency Medicine, Sir Ganga Ram Hospital, New Delhi, 110060, India

Salient findings:

- PCT differentiates culture-negative sepsis from SIRS at a cut off of 1.43 ng/ml, with 92% sensitivity and 83% negative predictive value (AUC 0.892)
- PCT differentiates culture-positive sepsis from SIRS at a cut off of 2.49
 - ng/ml, with 94.4% sensitivity and 91.5% negative predictive value (AUC 0.959)

Next Question

Identification of a marker or markers to effectively differentiate between sepsis, severe sepsis and septic shock

HOW?

Pathophysiology of sepsis Disruption of the glycocalyx is a known event

The Glycocalyx

The Glycocalyx

Hyaluronan & Syndecan Glycocalyx components

Study Objectives

1.To study the evolution of hyaluronan and syndecan (glycocalyx components) as prognostic markers for sepsis

- 2. To correlate their serum levels with
- a) Progression of disease
- b) Survival status
- c) Organ failure
- d) Inflammatory mediators

Methods: Inclusion & Exclusion criteria

Inclusion Criteria

- Age ≥18 years
- Patients admitted to the intensive care unit with community acquired Sepsis, Severe sepsis or Septic shock

Exclusion Criteria

- -Post-operative patients
- -Lethal condition
- -Malignancy
- -Immunocompromised
- -Transferred from other ICU's

Methodology

Days 1,3,5, and 7 ----- Blood drawn from all subjects

Following analytes estimated in serum:

- Hyaluronan- Competitive Enzyme Linked Immunosorbent Assay (Teco Medical, Switzerland)
- Syndecan- Solid Phase Sandwich Elisa

(Diaclone, Besancom Cedex, France)

- TNF-α Chemiluminescent Immunoasasy (Immulite, Siemens)
- Interleukin-10 Solid Phase Sandwich Elisa

(Diaclone, Besancom Cedex, France)

SOFA and APACHE II scores

RESULTS

Receiver Operating Characteristic Curve for Hyaluronan and Syndecan between survivor and non-survivors groups at different time-points A Hyaluronan

1 - Specificity

в

Patient baseline characteristics

	Sepsis (N = 15)	Severe Sepsis (N = 45)	Septic Shock (N = 90)	p Value
Age, Mean <u>+</u> S.D	52.2 <u>+</u> 16.3	53.4 <u>+</u> 16	54 <u>+</u> 16.5	ns
Gender (M/F)	8/7	27/18	56/34	ns
Mortality– N (%)	1 (6.66%)	6 (13.3%)	34 (37.7%)	0.002
APACHE II Mean <u>+</u> S.D.	9 + 6.2	20.1 + 7.0	25.1 + 7.4	0.004
SOFA SCORE Mean <u>+</u> S.D.	4.8 + 2.1	8.5 + 3.7	12.1 + 3.5	<0.001

Α

В

Α

В

Receiver Operating Characteristic Curve

Receiver Operating Characterstics of Hyaluronan

Survivors vs Non-Survivors

Days	Variable	Cut Off	Sensitivity %	Specificity %	PPV %	NPV %
Day 1	220	0.573 (0.47-0.67)	73	44	33	81.3
Day 3	344	0.671 (0.55-0.79)	64	71.3	47	84
Day 5	321	0.720 (0.61-0.82)	71	76	49.02	89.1 3
Day 7	441	0.827 (0.73-0.91)	61	90	62	90

Receiver Operating Characterstics of Syndecan

Survivors vs Non-Survivors

Days	AUC	Cut Off	Sensitivity %	Specificity %	PPV %	NPV %
Day 1	625	0.644 (0.54-0.74)	56	71	42	81
Day 3	389	0.756 (0.66-0.84)	85.4	55	41.7	91
Day 5	898	0.801 (0.71-0.98)	52.9	94	72	86.3
Day 7	455	0.751 (0.621-0.881)	59	86	48.1	91

Hyaluronan: Association with Mortality, Organ Dysfunction scores and inflammatory markers at all Time-points

Hyaluronan	Day 1	Day 3	Day 5	Day 7
APACHE II	r=0.387 p<0.001			
SOFA	r=0.387	r=0.406	r=0.327	r=0.289
	p<0.001	p<0.001	p<0.001	p=0.002
TNF- α	r=0.338	r=0.341	r=0.258	r=0.256
	p=0.001	p=0.002	p=0.043	p=0.033
IL-10	r=0.232	r=0.264	r=0.260	r=0.256
	p=0.032	p=0.017	p=0.023	p=0.049

Syndecan: Association with Mortality, Organ Dysfunction scores and inflammatory markers at all Time-points

Syndecan	Day 1	Day 3	Day 5	Day 7
APACHE II	r=0.294 p<0.001			
SOFA	r=0.437 p<0.001	r=0.354 p=0.003	r=0.494 p<0.001	r=0.217 p=0.026
TNF- α	r=0.234 p=0.029	r=0.321 p=0.010	r=0.382 p=0.001	p=ns
IL-10	r=0.215 p=0.05	r=0.229 p=0.050	r=0.354 p=0.004	r=0.266 p=0.044

Summary

Serum levels of Hyaluronan and Syndecan

Serum levels on admission categorize the patient into sepsis, severe sepsis and septic shock Both markers show a significant positive correlation with –

- Organ dysfunction
- Mortality scores
- Pro- & Anti-inflammatory markers

Serial measurements differentiate survivors from non-survivors with the following:

	Cut-off	Specificity	NPV
н	441 ng/ml	90%	90%
S	898 ng/ml	94%	86%

Conclusions

Glycocalyx components [hyaluronan and syndecan] could be used for diagnosis i.e. to differentiate between sepsis, severe sepsis and septic shock.

Hyaluronan and syndecan could also be used for prognosis i.e. to identify survivors and nonsurvivors.

Required: Further multicentric studies on these as well as other glycocalyx components to demonstrate comparative clinical utility of these markers. Also this would give further direction as to the usefulness of therapy targetting these markers Acknowledgements

Ms Dimple Anand PhD student

Dr. Sumit Ray

Critical Care Intensivist

Patients

Enrolled subjects

ICMR [Indian Council of Medical Research] for funding the project

THANK YOU