About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology ‘Open Access’, OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.
OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.
Ion channels phosphorylopathy:

A link between genomic variations and heart arrhythmia

3rd International Conference on Clinical & Experimental Cardiology
April 15-17, 2013

Saverio Gentile, Ph.D
Loyola University Chicago, USA
gene name
hERG-1: human ether-a-go-go-related gene 1

Protein name:
Kv11.1: Voltage-gated potassium channel 11.1

gene name
CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit

Protein name:
Cav 1.2; L-type

Tissues

Brain
Hypophysis
Heart
Pancreas
Intestine
More than 290 mutations on Kv11.1 channel are associated with Long QT syndrome

Drug-induced torsades de pointes: The evolving role of pharmacogenetics
Patrick T. Fitzgerald, MDs, Michael J. Ackerman, MD, PhD Heart Rhythm, 2005
Ribbon representation of the Kv1.2-Kv 2.1 paddle chimera tetramer (PDB 2R9R, K+ ions shown as green spheres) viewed from the side with the extracellular solution above. http://lab.rockefeller.edu/mackinnon/
T3 stimulates hERG1 channel activity

Kv11.1 currents

- E4031
- control
- T3

Charge (pC) vs. time (min)

- hERG

Gentile et al, PNAS 2008
Gentile et al, PNAS 2006
T3 regulates hERG-K897T through PI3K but not through Rac and PP5.

Gentile et al, PNAS 2008
Gentile et al, PNAS 2006
hERG-SNP K897T is associated with cardiac ventricular arrhythmia and sudden death.
T3 inhibits hERG1-K897T activity
T3 regulates hERG-K897T through PI3K but not through Rac and PP5.
Conclusion

-Kv11.1-897T is a substrate for PKB (Phosphorylopathy by creating a phosphosite)

-Inhibition of Kv11.1 by PKB links a human SNP to a fatal cardiac phenotype
Long QT2 Mutation on the Kv11.1 Ion Channel Inhibits Current Activity by Ablating a Protein Kinase C Consensus Site.

Donovan, Lansu, Williams, Denning, and Saverio Gentile
MOLECULAR PHARMACOLOGY 2012, Vol. 82, No. 3

PKC motif
Kv11.1-WT 887-R-K-L-S- F -R
pS (PKC) -R-K-X-S-hyd-R/K

![Graph showing current activity](image1)

![Western blot analysis](image2)

![Graph showing relative density](image3)
Timothy syndrome mutation creates a CAMKII consensus site

CAMKII \(-R-x-x-S/T\)

\(\text{A) CaV1.2.....436-G-W-D-S-439}\)

\(\text{KN-62= CAMKII inhibitor}\)

\(\text{B) CaV1.2.....436-R-W-D-S-439}\)

\(\text{C) CaV1.2.....436-R-W-D-S-439 + KN-62}\)

\(\text{D) CaV1.2.....436-R-W-D-S-439A}\)
Conclusion

We propose that aberrant phosphorylation, or “phosphorylopathy,” of the CaV1.2 channel protein contributes to the excitotoxicity associated with LQT8.
Ion channel Phosphorylopathies:

Mutations that creates or disrupts phosphorylation sites on ion channels

1. Creation of kinase consensus site by adding a phosphorylatable residue
 - PKB motif
 - hERG-1 897K 892- R R R T D K -897
 - hERG-1 897T 892- R R R T D T -897

2. Disruption of kinase consensus site by removing a docking residue
 - PKC motif
 - Kv11.1 887R 887- R K L S F R -892
 - Kv11.1 887H 887- H K L S F R -892

3. Creation of kinase consensus site by adding a docking residue
 - CAMKII motif
 - Cav1.2 406G 406- G W D S -409
 - Cav1.2 409R 406- R W D T -409

Kv11.1 Ion channel malfunction and Cardiac arrhythmia

CaV1.2 Ion channel malfunction and Cardiac arrhythmia
Ion channels phosphorylopathy: A link between genomic variations and heart arrhythmia

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>SNP</th>
<th>PO4</th>
<th>Kinase</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACNA1C</td>
<td>Cav1.2</td>
<td>S1545P</td>
<td>-60%</td>
<td>CAMKII</td>
<td>Timothy</td>
</tr>
<tr>
<td>KCNH2</td>
<td>Kv11.1</td>
<td>K897T</td>
<td>+94%</td>
<td>PKB</td>
<td>LQT2</td>
</tr>
<tr>
<td>KCNH2</td>
<td>Kv11.1</td>
<td>R176W</td>
<td>-94%</td>
<td>PKA</td>
<td>LQT2</td>
</tr>
<tr>
<td>KCNH2</td>
<td>Kv11.1</td>
<td>T474I</td>
<td>-90%</td>
<td>PKA</td>
<td>LQT2</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>Kv7.1</td>
<td>G179S</td>
<td>+73%</td>
<td>GSK3</td>
<td>LQT1</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>Kv7.1</td>
<td>Y184S</td>
<td>+80%</td>
<td>CAMKII</td>
<td>LQT1</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>Kv7.1</td>
<td>S566F</td>
<td>-76%</td>
<td>CAMKII</td>
<td>LQT1</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>Kv7.1</td>
<td>W392R</td>
<td>+75%</td>
<td>CAMKII</td>
<td>LQT1</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>Kv7.1</td>
<td>A525T</td>
<td>+67%</td>
<td>PKA</td>
<td>LQT1</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>Kv7.1</td>
<td>R583C</td>
<td>-91%</td>
<td>CAMKII</td>
<td>LQT1</td>
</tr>
<tr>
<td>KCNQ2</td>
<td>Kv7.2</td>
<td>N780T</td>
<td>+99%</td>
<td>CAMKII</td>
<td>MYOK, EPI</td>
</tr>
<tr>
<td>KCNJ1</td>
<td>Kir1.1</td>
<td>S219R</td>
<td>-79%</td>
<td>PKA</td>
<td>Bartter Syn.</td>
</tr>
<tr>
<td>KCNJ13</td>
<td>Kir1.4</td>
<td>T175I</td>
<td>-90%</td>
<td>CAMKII</td>
<td>Bartter Syn.</td>
</tr>
<tr>
<td>KCNJ12</td>
<td>Kir2.2</td>
<td>S15L</td>
<td>-99%</td>
<td>GSK3</td>
<td>Not reported</td>
</tr>
<tr>
<td>TRPC6</td>
<td>TRPC6</td>
<td>P15S</td>
<td>+96%</td>
<td>CK1</td>
<td>GMS</td>
</tr>
<tr>
<td>TRPV4</td>
<td>OTRPC4</td>
<td>P19S</td>
<td>+94%</td>
<td>CK2</td>
<td>Not reported</td>
</tr>
</tbody>
</table>
Thanks (a lot) to:

Mr. Alexander J. Donovan
Research Assistant
2010-2011
Now Ph.D Student in the Chemistry Department @ UIC

Miss. Katherine Lansu
Research assistant
2011-2012
Now Ph.D Student @ UNC
T3/TRH-dependent regulation of hERG1 channel activity

Gentile et al, PNAS 2008
Gentile et al, PNAS 2006
Summary of the values for the long open times, τ_{o2}, as well as the frequency of mode 2 openings from the indicated number of patches expressing each construct.

CAMKII - R-x-x-S/T

CaV1.2……436-G-W-D-S-439

CaV1.2……436-R-W-D-S-439

CaV1.2……436-R-W-D-A-439
Ion channel Phosphorylopathies:

Mutations that creates or disrupts phosphorylation sites on ion channels

Kv11.1 Ion channel malfunction and Cardiac arrhythmia

PKB motif
- R P R T T S -

hERG-1 897K 892- R R R T D K -897
hERG-1 897T 892- R R R T D T -897

PKC motif
- R K X S X R -

Kv11.1 887R 887- R K L S F R -892
Kv11.1 887H 887- H K L S F R -892

CaV1.2 Ion channel malfunction and Cardiac arrhythmia

CAMKII motif
- R X D T -

Cav1.2 406G 406- G W D S -409
Cav1.2 409R 406- R W D T -409

Disruption of kinase consensus site by removing a docking residue

Creation of kinase consensus site by adding a phosphorylatable residue
gene name
CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit

Protein name:
Cav 1.2; L-Type

L-Type Ca2+ Channel Function During Timothy Syndrome
Rose E. Dixon, Edward P. Cheng, Jose L. Mercado, Luis F. Santana
Trends in Cardiovascular Medicine Volume 22, Issue 3, April 2012, Pages 72–76
Phosphorylation requires recognition of a specific kinase signature
Thanks' for your kind attention!!!!!!
Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit:
www.omicsgroup.com
www.conferenceseries.com
http://cardiology.conferenceseries.com/