THE PARADOX OF HUMAN EQUIVALENT DOSE FORMULA – / **CANONICAL CASE STUDY OF PIROXICAM (FELDENE) IN MONOGASTRIC ANIMALS SAGANUWAN ALHAJI SAGANUWAN** (DVM, PGD, PGDE, MSc, PhD, FIIA)

PIROXICAM IS A NON-STEROIDAL ANTI-INFLAMMATORY ANALGESIC THAT CAN CAUSE ALCERATION OF **MUCOSAL LINING AND BLEEDING ØF GASTROINTESTINAL TRACT. IT IS ALSO TOXIC TO KIDNEY. THE DAILY DOSE FOR AVERAGE ADULT HUMAN IS 10-40 MILLIGRAMMES**

ALLOMETRIC SCALING IS AN EMPIRICAL EXAMINATION OF THE RELATIONSHIP BETWEEN THE PHARMACOKINETIC PARAMETERS AND SIZE (USUALLY BODY WEIGHT, RATIO OF ORGAN & BOD) WEIGHT, BREATHING NUMBER ETC). THE ALLOMETRIC EQUATION IS:

 $\frac{P}{BW} = a(BW)^m$

WHERE P = PHYSIOLOGICAL PROPERTY OR ANATOMIC SIZE

a = EMPIRICAL COEFFICIENT

BW = BODYWEIGHT

m = ALLOMETRIC EXPONENT

THE SURFACE AREA STILL FINDS WIDE ACCEPTANCE IN THE **CLINICAL LITERATURE, AND IS AT NO MORE THAN A ROUGH EMPIRICAL APPROXIMATION EVEN** FOR HOMOITHERMS.

BODY SURFACE AREA (BSA) IS EQUAL TO: BODY WEIGHT (kg)^{2/3} x **10**⁻⁴ x K K FOR DOG = 10.1K FOR CAT = 10.0**EMPIRICAL COEFFICIENT = 10^{-4}** THE BODY WEIGHT EXPONENTS ^{2/3} OR 3/4 CAN BE USED

BUT 3/4 EXPONENT GIVES A HIGHER DOSE THAN 2/3, HENCE SHOULD NOT BE APPLIED

DOG*, CAT, MONKEY*, BABOON*, RABBIT*, MICRO-PIG, MINI-PIG, SQUIRREL MONKEY, MARMOSET, FERRET, GUINEA – PIG*, HARMSTER, RAT & MOUSE

HUMAN EQUIVALENT DOSE (HED) WHICH EQUAL TO ANIMAL DOSE (AD) MULTIPLIE **BY ANIMAL KM DIVIDED BY HUMAN KM W/ USED TO PROJECT THE THERAPEUTIC DOS OF PIROXICAM IN SEVEN (7) MONOGASTR ANIMALS.** $\mathbf{HED} = \frac{AD \ x \ AK_m}{HK_m}$ WHEREAS KM FACTOR IS BODY WEIGHT (KG) DIVIDED BY BODY SURFACE AREA (m

HUMAN EQUIVALENT NO-OBSERVABLE ADVERSE EFFECT DOSES WHERE DETERMINED BY MULTIPLYING ANIMAL NO-OBSERVABLE ADVERSE EFFECT DOSE BY ANIMAL WEIGHT (AW) DIVIDED BY HUMAN WEIGHT (HW). **HENAED** = $\frac{ANAED \times A_w}{W}$ H...

TABLE: HUMAN-MONOGASTRIC ANIMAL EQUIVALEN DOSES OF PIROXICAM (20 MILLIGRAMMES)

S/No	Species	Body weight (kg)	BSA (m²)	K _m Factor	Therapeutic Dose (mg)	Total Translated Dose (mg)	Total give Literature ((mg)
1.	Mouse	0.02	0.007	2.9	3.6	0.072*	
2.	Hamster	0.08	0.02	4.0	2.6	0.2*	
3.	Rat /	0.15	0.025	6.0	1.7	0.25*	
4. /	Guinea pig	0.4	0.069	5.8	1.8	0.72*	
5.	Rabbit	1.8	0.15	12.0	0.89	1.6	-
6.	Monkey	3.0	0.24	12.5	0.85	2.5	-
······································	Baboon	12	0.6	20.0	0.53	6.3	-
8.	Ferret	0.3	0.043	7.0	1.53	0.45*	
9.	Marmoset	0.35	0.06	5.8	1.84	0.64*	
10.	Squirrel monkey	0.6	0.09	6.7	1.59	0.95*	
11.	Cat	7.0	0.37	18.9	0.56	3.9*	-
12.	Dog*	10	0.5	20.0	0.53*	5.3*	3 – 5
13.	Micro-pig	20	0.74	27.0	0.39	7.8	-
	Mini-pig	40	1.14	35.1	0.30*	12**	_
75.	Adult human	70	1.86	37.6	0.285	-	10-40**

***SINGLE DOSES OF PIROXICAM (20 - 4** MG) IN HUMAN ARE REASONABLY **EFFECTIVE FOR TREATING MODERATE T SEVERE POST-OPERATIVE PAINS AND COMPARE FAVOURABLY WITH OPIOID ANALGESICS SUCH AS** DEXTROPROPOXYPHENE AND TRAMADC FEW ADVERSE EFFECTS WERE REPORT AND PIROXICAM APPEARS TO BE FAIRL **TOLERATED IN THIS CLINICAL CONTEX**

***IN MULTIPLE DOSING THE ADVERSE EFFECT PROFILE MAY BE MORE PROMINENT, THEREFORE, THERE IS A DEFINITE NEED TO BE ABLE TO QUANTITATIVELY ASSESS THE EFFICAC AND ADVERSE EFFECTS OF PIROXICAN IN PROLONGED DOSING REGIMENS** (MOORE ET AL., 2010).

THE EXTRAPOLATED HIGH DOSES OF **PIROXICAM FOR MONOGASTRIC** ANIMALS AGREES WITH THE REPORTS O CALEJESAN ET AL. (2000), SUKUMARANNAR ET AL. (2002) AND HELLYER ET AL. (2007) INDICATING THAT ANIMALS FEEL MORE PAIN THAN HUMANS, SINCE THEY POSSESS MORE **DIFFUSE NEURAL NETWORKS.**

THE EXTRAPOLATED DOSE OF **PIROXICAM (1.7 MG/KG) AGREES** WITH THE REPORT OF UDEGBUNAM ET AL. (2012) INDICATING THAT **PIROXICAM (5MG/GK) ALLEVIATED PAIN AND STRESS ASSOCIATED WITH WOUNDS IN RATS WITH MINIMAL** SIDE EFFECTS.

STURMAN AND SMITH (1967) REPORTED THAT RHESUS MONKEY, RABBIT AND GUINEA-PIG RESEMBLE MAN IN HAVING A RELATIVELY HIGH **AFFINITY FOR BINDING SALICYTE A NSAIDS SIMILAR TO PIROXICAM IN** PHARMACOLOGICAL ACTION. BUT BABOON, DOG, RAT AND MOUSE HAD LOW BINDING CAPACITY.

GASTRIC LESION AND RENAL PAPILLAR NECROSIS HAVE OCCURRED IN DOGS RECEIVING 1 MG/KG DAILY (GALBRAIT AND MCKELLAR, 1991; KNAPP ET AL., 1992). HOWEVER, LITTLE EVIDENCE O **OXICITY (GASTROINTESTINAL BLEEDIN WAS NOTED AFTER ADMINISTRATION C 0.3 MG/KG EVERY OTHER DAY** (GALBRAITH AND MCKELLAR, 1991; KNAPP ET AL., 1992).

EXTRAPOLATION FROM USE IN HUMANS TO DOGS SHOULD BE DONE CAUTIOUSLY BECAUSE OF POSSIBLE DIFFERENCES IN VOLUME OF DISTRIBUTION, THERAPEUTIC CONCENTRATIONS OR SAFETY MARGIN (BOOTHE, 2001).

CONCLUSION:

- THE EXTRAPOLATED TOTAL DOSES FOR DOG (10kg), CAT (7kg), RABBIT (1.8kg), MONKEY (3kg), BABOON (6.3kg), MICRO-PIG (20kg) AND MINI-PIG (40kg) ARE 5.3, 3.9, 1.6
 2.5, 6.3, 1.6mg RESPECTIVELY
- ii. LITERATURE SEARCH HAS SHOWN A TOTAL OF 3-5mg FOR DOG WEIGHING 10kg
- iii. FOR A DOG WEIGHING 10kg, A DOSE OF 5.3 MILLIGRAMM SHOULD NOT BE EXCEEDED, AND THE SAME PRINCIPLE APPLIES TO THE REST OF EXTRAPOLATED DOSES, SINCE THE DOSES HAVE NOT BEEN EVALUATED
- iv. LABORATORY TEST CAN BE CARRIED OUT FOR VALIDATIO OF THE EXTRAPOLATED DOSES.
- v. THE ROUGH ESTIMATION OF THERAPEUTIC DOSES FOR HUMAN DRUGS WHOSE ANIMAL DOSES HAVE NOT BEEN DETERMINED IS EVIDENT IN VETERINARY CLINICAL PRACTICE.

REFERENCES:

BOOTHE, 2001 CALEJESAN ET AL., 2000 DUBOIS & DUBOIS, 1915, 1916 GALBRATH AND MCKELLAR, 1991 HELLYER ET AL. 2007 MOORE ET AL., 2010 PLUNKETT, 2001, KAPP ET AL., 1992, 1994

REFERENCES:

REAGAN-SHAW ET AL., 2007 SAGANUWAN, 2012

SAGANUWAN & ONYEYILI, 2014 STURMAN AND SMITH, 1967

SUKUMARANNAR ET AL., 2002 UDEGBUNA, ET AL., 2012

ACKNOWLEDGEMENT

I SINCERELY THANK THE MANAGEMEN OF THE OMIC FOR GIVING ME AN OPPORTUNITY TO PRESENT THIS FOP THE SAKE OF KNOWLEDGE, OUR **CLIENTS AND PATIENTS**

THANKS FOR LISTENING