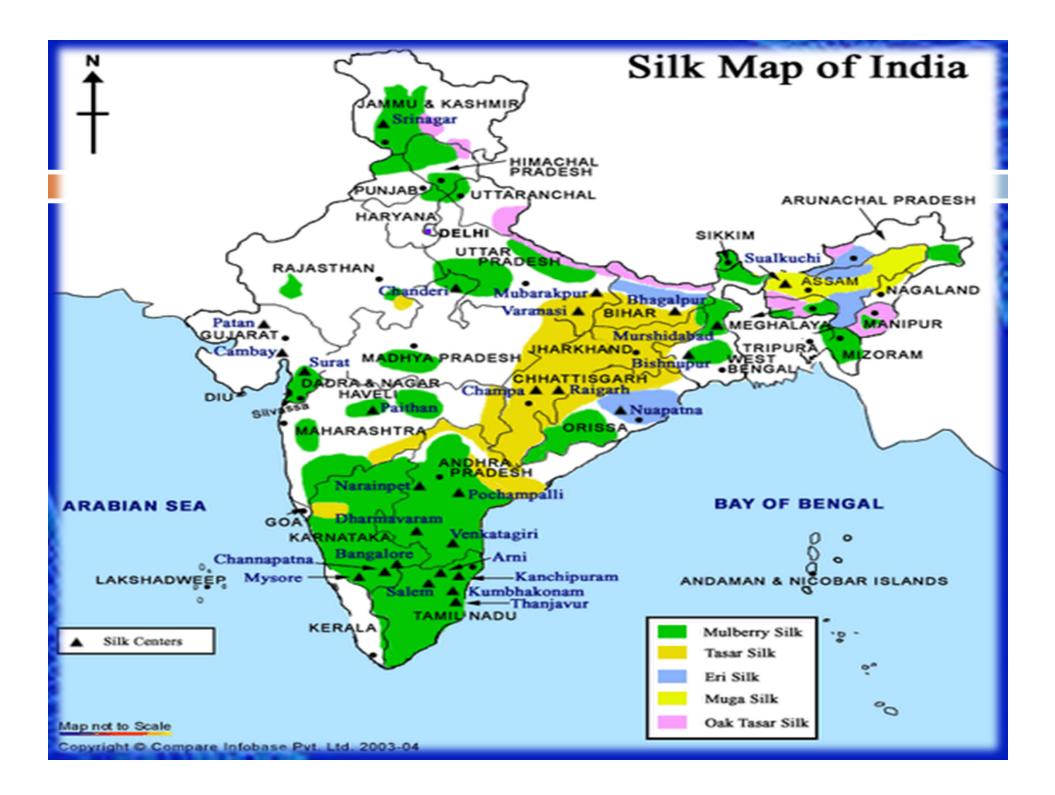
WELCOME

To

4th International Conference on Agriculture - 2015

Association analysis of major nutrient and secondary nutrient status of leaves of selected castor genotypes and growth indices of eri silkworm

> Dr. S. CHANDRASHEKHAR Professor of Sericulture


UNIVERSITY OF AGRICULTURAL SCIENCES BENGALURU, INDIA.

CLASSIFICATION OF SERICULTURE

	Mulberry	Mulberry Silkworm
Based on Host Plants	Non-Mulberry	Eri Silkworm
Buseu on nost mants		Tasar Silkworm
		Muga Silkworm
Based on Cultivation	Agro-Based	Mulberry Silkworm
of Host Plants		Eri Silkworm
	Forest Based	Tasar Silkworm
		Muga Silkworm

GLOBAL RAW SILK PRODUCTION - 2014

۸T	M	Country	МТ	Country
74	2847	India (16%)	560	Brazil
10	1	Indonesia	8	Bulgaria
10	11	Iran	146000	China (82%)
30	3	Japan	0.5	Colombia
00	110	Uzbekistan	0.5	Syria
20	42	Vietnam	692	Thailand
15	1	Madagascar	4	Tunisia
05	17780	Total	32	lurkey

RAW SILK PRODUCTION IN INDIA

Type of Silk	MT	%	
Mulberry	21,272 MT	74.73%	
Eri	4,633 MT	16.27%	
Tasar	2,404 MT	8.44 %	
Muga	158 MT	0.55%	
Total	28,467	100	

Mulberry Sericulture

Ericulture

Tasar Culture

Muga Culture

HOST PLANTS OF ERI SILKWORM

	Primary	Castor, Ricinus communis & Kesseru, Heteropanax fragrance
	Secondary	Tapioca, Manihot utilissima & Payam, Evodia fraxinifolia
	Tertiary	Maharukh Ailanthus excelsa, Barkesseru A. gladulosa
		Gogul Ailanthus grandis, Guggul Dhup Ailanthus tryphysa
		Paypaya Carica papaya, Masuri Coriaria nepalensis
Q.		Thebow Hodgosonia heteroclita, Safed Arandi Jatropha curcus
		Bhotera Jatropha multifida, Phutkoul Micromelium pubescence
		Golainchi Plumeria acutifolia, Korha Sapium eugenifolium
22		Vilayati Shisham Sapium sebiferum, Tejbal Xanthoxylum alatum
		Badrang Xanthoxylum rhesta

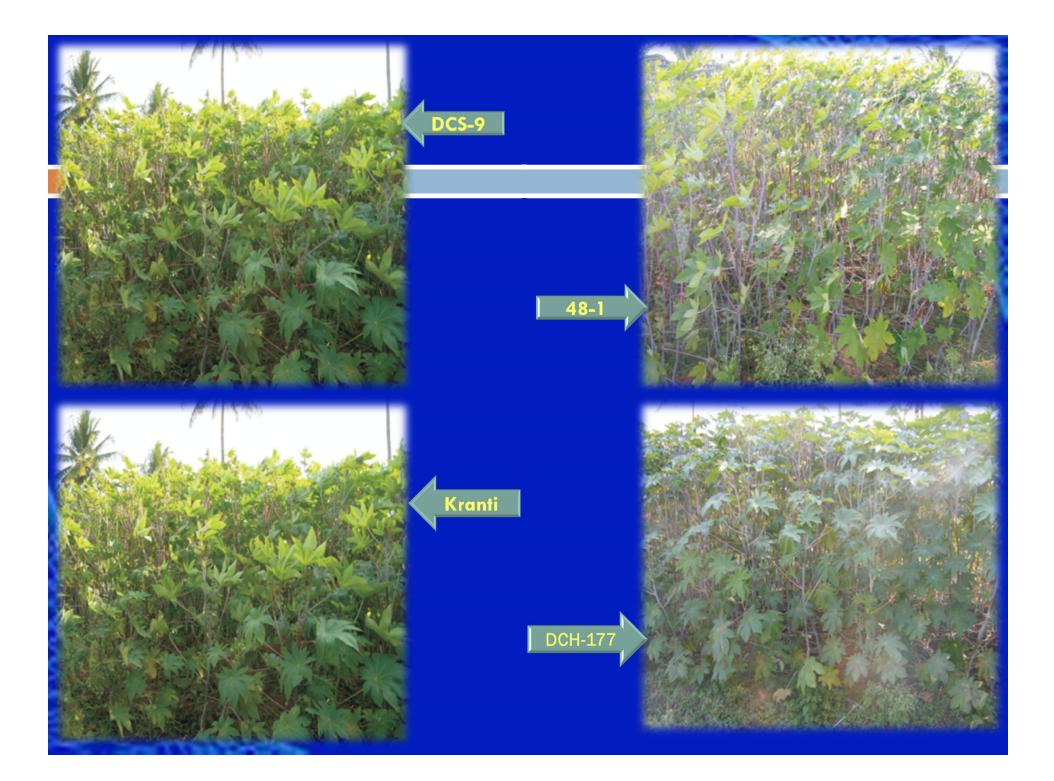
Castor is one of the ancient oilseed crops of the world. India accounts for nearly 65 % of the world's castor production.

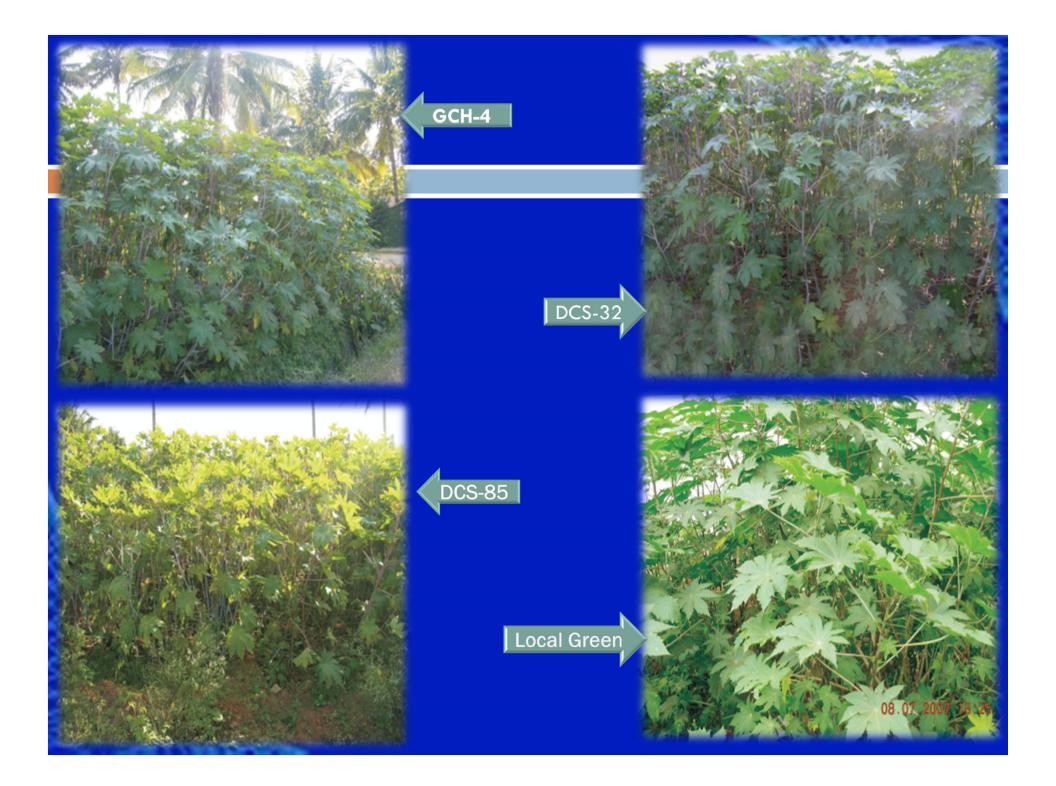
- In India, castor is cultivated in about 6.28 lakh ha in the states of Andhra Pradesh, Orissa, Gujarat, Karnataka, Kerala, Tamil Nadu, Maharashtra, Madhya Pradesh, Rajasthan, Bihar, Uttar Pradesh, Punjab and West Bengal for oilseed production (7.62 lakh tonnes) only with a productivity of 1213 kg/ha.
- In Karnataka, Castor is cultivated in an area of 24,981 ha with a production and productivity of 25,989 MT and 1095 kg/ha, respectively.

- Tasar and muga silkworms mainly feed on leaves of forest trees, attempts to increase their production have certain drawbacks over ericulture.
- Ericulture in one acre of castor fetches a net income of Rs. 12,000 to 15,000/- per year, when entire foliage is used for silkworm rearing.
- It is known that 25 to 40 per cent of foliage from castor plantations can be utilized for eri silkworm rearing without affecting the seed production

The quality of leaves provided to the worms for feeding has been considered as the prime factor influencing the production of good cocoon crop. There is a tremendous scope for ericulture in castor growing areas without affecting castor seed production which it provides additional returns for the poor, dry land cultivators and small and marginal farmers.

Castor, a minor oilseed crop can be linked with ericulture to maximize the returns if right choice of the genotype of castor is made.




To study the major and secondary nutrient status of castor leaf in different genotypes.

 To know the relationship between foliar constituents of castor and growth indices of eri silkworm.

METHODOLOGY

1.	Castor genotypes	Eight elite castor hybrids / varieties
2.	Cultivation practices	Recommended package
3.	Observations	Major and secondary nutrients
4.	Statistical design	Randomized Complete Block Design
5.	Eri silkworm breed	White - plain
6.	Rearing practices	Recommended package
7.	Observations	Growth indices
8.	Statistical design	Complete Randomized Design

Foliar analysis of castor leaf

- The leaf samples at three different heights of the plant *viz.*, top, middle and bottom collected in paper bags.
- Composite leaf samples were made at 90 days after sowing.
 - Leaves were shade dried for three days. Then dried in hot air oven at 70°C until constant weight was obtained.
 - The samples were ground into fine powder and preserved in butter paper bags.

Major Nutrients

Nitrogen: Estimated using 0.5g of sample and digested in conc. H_2SO_4 with $K_2SO_4 + CuSO_4 + Se$ mixture in a Kjeldhal flask and distilled in an alkaline medium. The liberated ammonia was collected in 4% boric acid containing bromocresol green methyl red mixed indicator and titrated against standard H_2SO_4 . From the data, the per cent nitrogen was calculated on oven dry weight basis (Jackson, 1973).

Phosphorus: Estimated by using digested extract by adding Vanadomolybdate method using HNO_3 medium. The colour intensity was measured using spectrophotometer at 420 nm (Jackson, 1973) and the phosphorus content was expressed in percentage on dry weight basis.

Potassium: Determined using the digested extract with the help of flame photometer and was expressed in percentage on dry weight basis (Jackson, 1973).

Secondary Nutrients

Calcium and Magnesium: In the digested extracts of castor leaf samples, calcium and magnesium were determined by titrating the aliquot against standard E.D.T.A. solution using suitable indicators as described by Jackson (1973) and the contents were expressed in percentage on dry weight basis.

Sulphur: Digested castor leaf samples was estimated by turbidometric method and expressed in percentage on dry weight basis (Jackson, 1973).

GROWTH INDICES OF ERI SILKWORM

≻Larval weight index	➤Eclosion index		
≻Larval duration index	>Oviposition index		
≻Pupal weight index	Hatching index Leaf – cocoon ratio		
Pupal duration index			
	 Leaf – egg ratio Leaf – cocoon conversion rate 		
Larval – pupal duration index			
Cocoon weight index	Leaf – silk conversion rate		
≻Silk index	Growth index:	% Pupation	
		% Moth emergence	
	>Net reproductive rate		

STATISTICAL ANALYSIS

The correlation co-efficients (p ≤ 0.05) were worked out to know the relationship between the foliar constituents of castor genotypes and growth indices of eri silkworm (Cochran and Cox, 2000).

Correlation co-efficients Major nutrients of castor leaf v/s Growth indices of eri silkworm

Source	Nitrogen	Phosphorus	Potassium
Larval weight index	0.6562	0.3641	0.2182
Larval duration index	-0.7030	-0.2606	-0.1662
Pupal weight index	0.2223	0.0642	0.1132
Pupal duration index	-0.5321	-0.1105	-0.0199
Larval – Pupal duration index	-0.6444	-0.2007	-0.1057
Cocoon weight index	0.6820	0.3570	0.2339
Silk index	0.7707*	0.4296	0.2742

Correlation co-efficients Major nutrients of castor leaf v/s Growth indices of eri silkworm

\$	ource	Nitrogen	Phosphorus	Potassium
Eclosion index		0.4675	0.1835	0.0866
Oviposition ind	ex	0.7263*	0.2930	0.1345
Hatching index		0.0527	0.5209	0.5660
<mark>Leaf – Cocoon ratio</mark>		-0.5874	-0.1404	0.1025
<mark>Leaf – Egg</mark> ratio		0.6470	0.1802	-0.0487
<mark>Leaf – Cocoon conversion rate</mark>		0.5990	0.1845	-0.0476
Leaf – Silk conversion rate		0.7096*	0.3038	0.0942
Growth index:	% Pupation	0.7281*	0.3171	0.2028
	% Moth emergence	0.6231	0.2092	0.1102
Net reproductive rate		0.7386*	0.3467	0.1988

Correlation co-efficients Secondary nutrients of castor leaf v/s Growth indices of eri silkworm

Source	Calcium	Magnesium	Sulphur
JUDICE	Calcion	magnesion	Solbitor
Larval weight index	0.8969*	-0.2964	0.4995
Larval duration index	-0.9405*	-0.0258	-0.3388
Pupal weight index	0.4610	-0.2148	0.1826
Pupal duration index	-0.9293*	-0.0415	-0.2902
Larval – Pupal duration index	-0.9579*	-0.0334	-0.3255
Cocoon weight index	0.9548*	-0.2356	0.4852
Silk index	0.9688*	-0.2333	0.5274

Correlation co-efficients Secondary nutrients of castor leaf v/s Growth indices of eri silkworm

Source Calcium Magnesium Sulphur **Eclosion index** 0.8936* -0.01550.3683 **Oviposition index** 0.9425* -0.15530.4131 **Hatching index** 0.0772 -0.7906 0.4597 Leaf – Cocoon ratio 0.0536 -0.3627 0.8408* Leaf – Egg ratio 0.8672* -0.0765 0.3536 0.8521* -0.0996 0.3828 Leaf – Cocoon conversion rate Leaf – Silk conversion rate 0.4616 0.9323* -0.1684Growth index: % Pupation 0.9815* 0.4222 -0.0864 % Moth emergence 0.9609* -0.00240.3465 Net reproductive rate 0.9492* -0.19920.4473

OUTCOME OF THE STUDY

- The foliar constituents of castor genotypes like major and secondary nutrients had marginal variations among them.
- Growth indices of eri silkworm also showed differences among various castor genotypes.
 - Foliar constituents of castor genotypes could establish positive correlation with growth indices of eri silkworm.

