Enriched food with undigestible fibers; Its stability, biological activity and satiety health benefits

Rubén López-Nicolás (University of Murcia)

5th Euro-Global Summit on: Food & Beverages 17 June 2015 Alicante

Obesity: a global problem

Overweight (www.who.int)

BMI = weight/(length²)

18<BMI<25 = normal

 \geq 25 = overweight

 \geq 30 = obese

Obesity: a global problem

Etc etc etc...

- ••High blood pressure, hypertension
- ••High blood cholesterol, dyslipidemia
- ••Type 2 (non-insulin dependent) diabetes
- ••Insulin resistance, glucose intolerance
- ••Hyperinsulinemia
- Coronary heart disease
- Angina pectoris
- ••Congestive heart failure
- Stroke
- ••Gallstones
- --Cholescystitis and cholelithiasis
- ••Gout

- Osteoarthritis
- ••Obstructive sleep apnea and respiratory problems
- ••Some types of cancer (such as endometrial, breast, prostate, and colon)
- Complications of pregnancy
- ••Poor female reproductive health (such as menstrual irregularities, infertility, irregular ovulation)
- ••Bladder control problems (such as stress incontinence)
- ••Uric acid nephrolithiasis
- ••Psychological disorders (such as depression, eating disorders, distorted body image, and low self esteem).

Stunkard AJ, Wadden TA. (Editors) *Obesity: theory and therapy*, Second Edition. New York: Raven Press, 1993.

Obesity: a global problem

Is there a quick answer to the question, "what contributes to overweight and obesity?"

Overall there are a variety of factors that play a role in obesity.

- Behaviour
- Energy imbalance
- Environment
- Genetic factors
- Metabolism
- Culture, and socioeconomic status

EU-funded SATIN project

SATIATION (to be accelerated)

SATIETY

SATIN FLOW CHART

SATIN objective:

use novel food processing technologies to alter the structure of foods to accelerate satiation, enhance satiety and reduce appetite.

WP1:Selection of Improved Satiating Food Components by *in vitro* Screening

PROFILE

In vitro gut simulator: TWINSHIME®

SHIME[®]: Simulator of the Human Intestinal Microbial Ecosystem

SHIME®: Simulator of the Human Intestinal Microbial Ecosystem

Ranking

Parameter	Positive Effect		
SCFA	Butyrate and proprionate > acetate (B-glucans and AX)		
SCFA	Acetate (RS)		
Ammonium	Ammonium production		
GAS	Low to moderate		
Lactobacilli (LAB)	Due to icrease of GABA and β- phenyl ethylamine		
Bifidobacteria	Bifidogenic effect		

Static Digestion Model and Cell Platform for Bio-availability

Sensory and Secretory Functions of Entero-endocrine Cells of the Gut

Cell Metabolism Vol.8. December 2008

www.satin-satiety.eu

In red squares the assays developed in the SATIN

Cell-based Platform for GI Hormone Secretion and Chemosensor Assays

Cell-based Platform for GI Hormone Secretion and Chemosensor Assays

Ranking

Ranking of Six Tested Prototypes: Matrix + Ingredient

PROTOYPE	CELL LINES (AXXAM)	SHIME (ProDI)	SOLUBILITY, BIOAVAILABILITY (UMUR)	USSING CHAMBER (BioAct)	Selected for Clinical trials
A	1	5	2	1	
В	2	3	4	4	
C	3	2	4	3	
D	4	4	4	5	
E	5	1	2		
F	5	6	1	1	

The rank order is from 1 to 6; were 1 corresponds to the best position

Conclusions

In WP1 a complementary and comprehensive *in vitro* platform, suitable to perform **preliminary and high throughput tests on the activity of new food components with potential satiety effects** has been developed and validated. Specifically:

- The existing SHIME model has been adapted for nutrient absorption, with the inclusion of a mouth step and a dynamic dialysis step to simulate absorptive processes in the small intestine.
- The static digestion model has also been implemented with a mouth step
- Cell-based assays have been established to assess ingredient solubility, stability and bio-availability.
- An in vitro cell based platform comprising primary assays, GI hormone secretion assays and secondary assays for chemosensors has been developed, optimized and validated with reference controls.
- An *ex-vivo* gut tissue based GI hormone secretion assay panel using Ussing Chamber technology has been optimized

Acknowledgments

- Massimo Marzorati, ProDigest BVBA, Belgium
- Carmen Frontela-Saseta & Gaspar Ros-Berruezo, University of Murcia, Spain
- Hans van der Saag, BioActor, The Netherlands
- Jason Halford & Joanne Harrold, University of Liverpool, UK
- Laura Stucchi & Lia Scarabottolo, Axxam S.p.A., Italy

Sample Tested

- Pure ingredients
- **Digested ingredients** processed through **short-term SHIME** batch experiments and collected from different SHIME compartments
- **Digested matrices** processed through **short-term SHIME** batch experiments and collected from different SHIME compartments
- Digested prototypes (matrix + ingredient) processed through long-term SHIME experiments and collected from different SHIME vessels

Metabolic Syndrome

- Abdominal obesity
- Hyperinsulinemia
- High fasting plasma glucose
- Impaired glucose tolerance
- Hypertriglyceridemia
- Low HDL-cholesterol
- Hypertension

