Anti-Inflammation and neuroprotective drugs benefit the treatment of heroin dependent patients

Ru-Band Lu, MD. Shiou-Lan Chen, PhD. Yun-Hsuan Chang, PhD.

National Cheng Kung University, Taiwan

Neurodegeneration in Mental Illnesses

- Schizophrenia
- Bipolar disorders
- Substance use disorders (alcohol)
- Anxiety disorders?
- Personality disorders?

Neuronal degeneration in schizophrenia

Schizophrenia and bipolar disorders

 Decreased grey & white matter and lateral ventricular dilatation

(Largen et al., 1984; De Peri I et al., 2012)

Neuronal degeneration in Bipolar Disorder

 Diffused gray and white matter loss, enlarged ventricles & mild prefrontal volume loss. (Wilde, et al., 1985)

 17% larger lateral ventricles and 2.5 times in deep white matter hyperintensities. (Kempton, M.J., et al., 2008.)

Neuronal degeneration in Substance Abuse

Both MRI's are of middle-aged women

Inflammation and neurodegeneration

Glial cells : Key roles in disease and prime targets for therapy

Microglia

Target for anti-inflammation

Astroglia

Source for neurotrophin production

NADPH oxidase (PHOX)

Dual Functions of Superoxide Radicals

Dextromethorphan (DM)

Memantine

- Non-competitive NMDA receptor inhibitor in large dose for anti-cough effect
- Neuroprotective effects in
 vitro and in vivo at low dose
- Non-competitive NMDA receptor inhibitor in large dosage
- Alzheimer's disease (20 mg/day)
 - Neuroprotective effects in vitro and in vivo at low dosage

Novel anti-inflammatory therapy

- *Novel Strategy*: Modulation of microglial activity
- Morphinans : Naloxone, D-Morphine Dextromethorphan
- Dynorphins, Enkephalin, PACAP
- Memantine

Conventional Regimen:

- Aspirin, COX 2 inhibitors (PG)
- Anti-oxidants (Free radicals)
- Antibodies (TNF-α, IL-1)
- Receptor antagonists (TNF-α)
- Cortisone (toxic for long-term use)

Mechanism underlying Memantine induced increase in expression of neurotrophic factors in astroglia

Therapy for neurodegenerative diseases and neuroprotective effect

Hypotheses & Experimental Protocol in Addition

 Neuro-inflammation worsen progress and neurodegeneration

 Neurondegeneration causing the etiology and progress of mental illness

Treatment of Neurodegeneration disease

 Current therapy treatment symptom or slowing or inhibiting the progress

 Development of novel therapy for central and peripheral diseases

Research Aims

Analysis of plasma cytokine and BDNF levels

Cytokine through BBB and correlation of BDNF in central and plasma

(Laske, 2006)

- The relationship of plasma cytokine, BDNF levels with heroin dependent
- Memantine and DM development of neuroprotective and neurogenesis therapy

The relationship between inflammation and opioid dependence

Animal data

Morphine addiction behavior model (Condition Place Preference: CPP)

CPP Test (Condition Place Preference Test)

Conditioning

20

Memantine attenuate chronic morphine induced-CPP in rats

M: Morphine 5mg/kg Mem: Memantine 0.04-1 mg/kg *P<0.05, **p<0.01, ***p<0.001 vs Saline group. ##P<0.01, ### p<0.001 vs Morphine group.

Chen et al., J. of Neuroimmune Pharm. Dec.2011

Memantine potentiate serum BDNF expression

M: Morphine 5mg/kg Mem: Memantine 0.04-1 mg/kg *P<0.05, **p<0.01 vs Saline group. #P<0.05, ## p<0.01 vs Morphine group.

J. of Neuroimmune Pharm. Dec.2011

Memantine attenuate chronic morphine induced serum and brain cytokines expression

NAc

mPFC

mPFC

NAc

*P<0.05, **p<0.01, ***p<0.001 vs Saline group.

#P<0.05 vs Morphine group.

J. of Neuroimmune Pharm.Dec.2011

Comments

- Large dose memantine 7.5 20mg/kg effective in NMDA receptor
- Low dose memantine (0.2 1mg/kg) not effective in NMDA
 receptor antagonist in rat
 (Chen et al. 2012)
- Low dose memantine (0.2 1 mg/kg) inhibition morphine addiction, decreasing cytokines and increasing BDNF in rat.
- Benefit in neuroprotection and neurogenesis

Comments

- Inflammation relative addictive behavior in rat
- Low dose memantine effective inhibition inflammation and addictive behavior

(Chen et al. 2012)

Human Heroin dependence treatment

Method and results

1. Double-blind, Placebo-Controlled, Randomized

2. Heroin dependence with methadone treatment

DM(60 or 120 mg/day) /placebo 196 recruited at baseline and 48 DM60mg, 44 DM120mg and 42 placebo left after 12 weeks treatment

memantine (5mg/day) /placebo
 133 recruited at baseline and 52 memantine and
 53 placebo left after 12 weeks treatment

Method and results

1. Double-blind, Placebo-Controlled, Randomized

2. Heroin dependence with methadone treatment

DM(60 or 120 mg/day) /placebo 170 recruited at baseline and 42 DM60mg, 32 DM120mg and 33 placebo left after 12 weeks treatment

memantine (5mg/day) /placebo
 133 recruited at baseline and 52 memantine and
 53 placebo left after 12 weeks treatment

Plasma Cytokine

(Chen et al., 2012)

DM for Heroin Addiction with Methadone Maintenance Treatment

The effects of dextromethorphan on plasma cytokines, methadone dose, and combined use of substances in patients undergoing methadone maintenance therapy

	MTD+Placebo		<i>p</i> -	MTD+DM60			MTD+DM120			
	Week 0	Week 12	valu e	Week 0	Week 12	value	Week 0	Week 12	<i>p</i> - value	
TNF-α (pg/mL)	4.4 ± 0.5	4.3 ± 0.9	0.57	5.0 ± 0.6	3.0 ±	0.000		2.9 ± 0.3**	0.000	
			1		0.4**	5	4.0 ± 0.4		9	
IL-8 (pg/mL)	4.8 ± 0.9	4.3 ± 0.9	0.14	7.4 ± 1.1	2.8 ± 0.3*	0.021	77.40	2.92 ±	0.02	
			5				1.1 ± 1.3	0.30*	0.03	
MTD dose (mg)	40.0 ±	44.8 ± 5.7	0.34	47.4 ±	42.0 ±	0.061	44.1 ±	41.9 ± 5.3	0.224	
	4.6		9	3.2	2.8		4.0			
MTD dose change (%)	100.0 ±	117.1±10.	0.09	100.0 ±	91.7 ±	Λ Λ1Q	100.0 ±	92.3 ±	0.034	
	0	0	6	0	5.2*	0.013	0	5.1*		
Urine morphine ⁺	19	18		15	7		18	12		
Plasma morphine (pg/mL)	16.5 ±	39.6 ±	0.06	22.0 ±	14.6 ±	0 226	24.1 ±	170140	0.52	
	4.1	12.0	4	7.4	3.1	0.230	6.7	<u>17.9 ± 4.0</u>		
Urine AMPH ⁺	3	0		4	1		2 (Che	en et al., 2012)31	

Heroin-dependent with methadone (MTD) therapy add on Placebo, dextromethorphan (DM) 60 mg/day (MTD+DM60) or MTD+DM120

(Chen et al., 2012)

Comments

- Low dose DM (60-120mg/day, 1-2mg/kg)
- Plasma level 10–200 ng/ml (28-560 nM)
- No effect in NMDA receptor antagonist (IC50: 5–50 µM)
- Effective in morphine addiction with methadone treatment Inhibition of methadone tolerance (one of important factors of addiction)
- Benefit in neuroprotection and decreasing neurodegeneration

(Chen et al. 2013)

(Church et al. 1994)

Heroin dependence with methadone treatment taking memantine or placebo

	Baseline				Endpoint			
	Memantine	Placebo	P-value		Memantine	Placebo	P-value	
Number (n)	53	75			45	58		
Gender (male/female) (n)	43/10	63/12	0.813		40/5	49/9	0.575	
Age, mean (SD), (years)	37.06 ± 6.97	36.93 ± 7.15	0.923		37.91 ± 6.66	37.09 ± 6.94	0.524	
Year of Heroin Use, mean (SD)	8.48 ± 7.10	7.58 ± 6.44	0.465		8.39 ± 7.27	7.35 ± 5.98	0.436	
TNF-α (pg/mL), mean (SD)	3.65 ± 2.67	3.77 ± 3.30	0.824		2.28 ± 1.89	3.84 ± 3.78	0.006	
CRP (ng/mL), mean (SD)	3902 ± 2929	3933 ± 3164	0.956		2518 ± 1951	3130 ± 2339	0.161	
IL-6 (pg/mL), mean (SD)	2.40 ± 2.16	2.49 ± 2.56	0.833		1.81 ± 1.39	2.34 ± 2.67	0.229	
IL-8 (pg/mL), mean (SD)	6.22 ± 9.77	5.01 ± 4.50	0.351		3.50 ± 4.78	2.99 ± 2.85	0.503	
TGF-β1 (ng/mL), mean (SD)	23.12 ± 15.69	23.62 ± 15.70	0.860		23.65 ± 12.55	18.00 ± 14.63	0.042	
BDNF (ng/mL), mean (SD)	9.08 ± 6.11	11.35 ± 8.49	0.098		9.00 ± 4.74	8.87 ± 5.91	0.905	
Methadone dosage (mg)	34.32 ± 20.00	36.07 ± 22.90	0.655		35.84 ± 22.40	44.14 ± 24.22	0.082	

Changes in Methadone dosage and cytokines after memantine or placebo treatment

Parameter	Estimate	SE	t	p-value
Primary Outcome				
Methadone Dose Required	-0.948	0.446	-2.128	0.034*
% of Change from baseline of Methadone Dose Required	-0.031	0.014	-2.242	0.025*
Secondary Outcome				
TNF-α (pg/mL)	-0.035	0.012	-2.924	0.004**
CRP (pg/mL)	-0.017	0.010	-1.630	0.104
IL-6 (pg/mL)	0.003	0.010	0.283	0.777
IL-8 (pg/mL)	-0.016	0.017	-0.921	0.357
TGF-β1 (pg/mL)	0.028	0.012	2.403	0.017*
BDNF	312.75	212.40	1.472	0.142

Change of Methadone dose in memantine and placebo after 12 weeks of treatment

36

Change of Methadone dose normalized using the baseline (week 0 = 100%) after treatment

37

Comments

- Low dose memantine (5mg/day)
- Plasma level 10–50 ng/ml (0.05–0.2 μM)
- No effect in NMDA receptor antagonist
 (IC50: 2–3 μM) (Parsons et al. 1999)
- Effective in morphine addiction with methadone treatment Inhibition of methadone dosage & tolerance (important factors of addiction)
- Benefit in neuroprotection and decreasing neurodegeneration

(Chen et al. 2013)

Potential beneficial effects of anti-inflammation-related drugs

Addiction

- Opiate abuse
- Alcohol abuse
- Smoking
- Compulsive eating disorder

<u>CNS diseases</u>

- Bipolar disorders
- Depression
- Schizophrenia
- Alzheimer's dis.
- Brain ischemia
- Parkinson's dis.
- MS
- Spinal injury

- Peripheral diseases
 - Asthma
 - Arthritis
 - Arteriosclerosis
 - Cancer
 - Diabetes
 - Heart attack
 - Hepatitis
 - Inflammatory pain
 - Crohn's dis.
 - Lupus
 - Sepsis (endotoxemia)

Peripheral effect in animal and human

Dextromethorphan (DM) decreases high lipid diet-induced atherosclerotic lesion formation in apo-E-deficient mice

The lipid-rich atherosclerotic lesions were identified with Oil-Red-O staining.

(Liu et al. 2009)

Conclusions

Regulating over-inflammation and/or autoimmune

effectiveness from central to peripheral

Treatment symptoms and treatment progress

Acknowledgement

- Professor Jau-Shyong Hong, PhD.
- Professor Pao-Luh Tao, PhD.
- Professor San-Yuan Huang, MD., PhD.
- Professor Yen Kung Yang, MD.
- Associate professor Hung-Ming Wu, MD., PhD.
- Associate professor Po See Chen, MD., PhD
- Shiou-Lan Chen, PhD.
- Shih-Heng Chen, PhD.
- Chun-Hsien, Chu, PhD.
- Sheng-Yu, Lee MD, MS.
- Yun-Hsuan Chang, Ph.D

Thank you