

Breaking Down barriers to promote effective antibiotic action

Roger W. Beuermqn Singapore Eye Research Institute Duke-NUS Ophthalmology, NUS

Disclaimer

Multiple Patents in Area

CSO-SinSa Labs, Montreal

Consultant-Allergan

All Bacteria have a Common Weakness,...their inner membrane which is markedly different than the human cell membrane

The so-called natural antibiotics-the **defensins** have used this weakness for millions of years to kill Gram negative and Gram positive pathogens (also virus and fungus) with out developing resistance.

But they just provide some coverage and in therapeutic concentrations can be inflammatory or toxic to human cells

NUHS PUKE

Singapore National

SinaHealth

Eve Centre

Extended Gram Negative Organisms

	Test Organism		Organism	MIC (µg/ml) SinSa	MIC (µg/ml) Gatifloxacin
		Value	Pseudomonas aeruginosa (DR 4877/07)-sputum	12.5	125
		(µg/m)	Pseudomonas aeruginosa	12.5	0.39
1	<i>E.Coli</i> ATCC 25922	3.125	(ATCC 9027)		
			Pseudomonas aeruginosa (ATCC 27853)	6.25	1.56
2	E.Coli ATCC 8739	3.125	Pseudomonas aeruginosa (DM 23257)-eve	12.5	0.78
			Pseudomonas aeruginosa	12.5	25
3	Klebsiella pneumoniae	3.125	(DR 5790/07)-wound		
	ATCC 10031		Pseudomonas aeruginosa (DM 4150 R)-NA	6.25	0.78
4	<i>Serratia marcescens</i> ATCC	6.25	Pseudomonas aeruginosa (DR 18531)-NA	6.25	3.125
	0100		Pseudomonas aeruginosa	6.25	1.56
5	Citrobacter koseri DM4432	6.25	(DM 23104)-eye		
			Pseudomonas aeruginosa	6.25	1.56
6	Protous vulgaris DM 1635	25	(DM 23155)-eye	2.125	> 50
0	FICIEUS VUIGAIIS DIVI 4055	23	(DM 15013)-wound	3.125	> 50

Zhou L, Liu SP, Chen LY, Li J, Ong LB, Guo L, Wohland T, Tang CC,

Lakshminarayanan R, Mavinahalli J, Verma C, Beuerman RW.

The structural parameters for antimicrobial activity, human epithelial

cell cytotoxicity and killing mechanism of synthetic monomer and

dimer analogues derived from hBD3 C-terminal region. Amino Acids. 2011 Jan: 40(1):123-33. DUKE NUS SINGAPOISE EYE RESONFIDENTIALTITUTE

Page 5

Treatment induced resistance Gatifloxicin MIC increased 4-8X

Simulation in the Laboratory and Induced During treatment of an experimental infection of the Mouse Cornea

NUHS

SingHealth

DUKE

SINGAPORE EYE RESEARCH INSTITUTE

Singapore National

Eye Centre

Strepheni

Rapid Killing-V2D

Design and synthesis of amphiphilic xanthone-based, membranetargeting antimicrobials with improved membrane selectivity. Zou H, Koh JJ, Li J, Qiu S, Aung TT, Lin H, Lakshminarayanan R, Dai X, Tang C, Lim FH, Zhou L, Tan AL, Verma C, Tan DT, Chan HS, Saraswathi P, Cao D, Liu S, **Beuerman** RW. J Med Chem. 2013 Mar 28;56(6):2359-73. Compared vancomycin and daptomycin

Pseudomonas aeruginosa ATCC 9027

Mouse model of Corneal Infection

- Antimicrobial coating for medical devices.
 - E.g keratoprostheses devices for the eye and other implants
 - Effective with Pseudomonas and Staph
 - More effective than an aggressive antibiotic strategy

FAS TECHNOLOGY

Facilitated Antibiotic Synergism, FAS, using Current Antibiotics, FAS Acts at submicrogram, sub MIC values to increase activity of existing antibiotics even on resistant forms of Pseudomonas and CREs , the carbapenem-resistant Enterobacteriaceae, such as E. coli and K. pneumoniae

FAS Technology helps to avoid resistance: kills bugs faster and at a lower concentration of antibiotic

SpearHead Technology: Molecules designed by SinSa breakdown the polyanionic LPS barrier and allow entry of antibiotics. Antibiotics tend to be either hydrophobic or large hydrophilic molecules.

IHS

Gram-negative Cell Wal

LPS: Without SHT

LPS: After SHT)

The Gram negative cell wall, at left is protected by LPS, seen above expanded. The porins allow only small hydrophilic molecules to pass SERI SINGAPORE EYE RESEA BOUKE DUKE

FAS Technology

Effective with Different Classes of Antibiotics

Chloramphenicol Erythromycin Gatifloxicin Ciprofloxicin Gentamycin Kanamycin Imipenam Tobramycin

We have developed several different classes of molecules that are effective when paired with these antibiotics

Summary of Synergistic Action with other Antibiotics

Antibiotics	Class	Target	MIC of antibiotics,	MIC (µg/mL) in the presence of B2088			FICI in the presence of	MIC in the presence of B2088_99				FICI in the presence of	
			µg/mL	1∕2 Ⅹ	1/4 X	1/8 X	1/16 X	B2088	1/2 X	1/4×	1/8 X	1/16×	B2088_99
Carbenicillin	Penicillins	Cell wall synthesis	1600	200	800	-	-	0.63	400	-	-	-	0.75
Chloramphenic ol		Protein Synthesis (23S rRNA)	200	12.5	25	50	-	0.38	6.25	25	50	-	0.38
Erythromycin	Macrolides	Protein Synthesis (23S rRNA	400	50	100	200	-	0.5	50	200	-	-	0.63
Gatifloxacin	Fluoroquinal ones	DNA replication: topoisomerases, gyrase and topo IV	31.25	7.8	15.6	15.6	15.6	0.56	7.8	15.6	-	-	0.75
Gentamycin ^a	Aminoglyco side	Protein synthesis: 16S rRNA	0.39	0.024	0.098	0.195	-	0.5	0.0243	0.098	0.195	-	0.5
Tobramycin	Aminoglyco side	Protein synthesis: 16S rRNA	400	50	200	-	-	0.63	200	-	-	-	1.0
Imipenam	β-lactams	Cell-wall synthesis: multiple penicillin binding proteins (PBPs)	0.78	0.098	0.195	0.39	-	0.5	0.098	0.39	-	-	0.63
Kanamycin	Aminoglyco side	Protein synthesis: 16S rRNA	3200	400	800	1600	1600	0.5	800	1600	1600	-	0.63
Nalidixic Acid	Quinalones	DNA replication: topoisomerases, gyrase and topo IV	3200	400	-	-	-	0.56	800	-	-	-	0.75
Streptomycin	Aminoglyco sides	Protein synthesis: 16S rRNA	200	50	100	100	-	0.63	50	100	-	-	0.75

^aFor gentamycin *P. aeruginosa ATCC 9027* was used to determine the FICI. For all other antibiotics a clinical isolate, *P. aeruginosa DR 4877* (multi drug resistant strain) was used

Time-Kill Kinetics of B2088/B2088_99 with Gatifloxacin

P. aeruginosa 27853

P. aeruginosa 9027

Combination of B2088/B2088_99 and Gati at Sub MIC displayed pronounced bactericidal effect

Page 15 Singapore National NUHS BNUS DUKE Eve Centre SingHealth

Synergy-increase the activity of current antibiotics ATP and LDH release-no toxicity at 1000ug/ml

Eve Centre

SingHealth

Chloramphenicol

A good antibiotic but with limited effectiveness against

Gram Negative organisms

Mouse Model of Cornea Infection

Infection with Pseudomonas aeruginosa ATCC 9027 Treatment 3X/day starting on Day 2

Summary

Facilitated Antibiotic Synergy (FAS)

FAS Technology deals with some of the most difficult pathogens-such as Pseudomonas and the CREs. FAS does the following:

1-Extends the action spectrum of some antibiotics

2-In many cases it will allow the use of lower concentrations of antibiotics to achieve the same therapeutic effect

3-FAS Technology can decrease bacteria kill times from 18-22hrs to 3-4hrs

Summary-2

4-Importantly it has the ability to lower the cost of development, should require fewer studies for IND filing, and more rapid entry into clinical use with Phase II trials

5-Importantly for patients offers better and quicker eradication of infections

6-FAS technology works with several classes of antibiotics

7-Improved therapeutic index

8-Health care costs should be lower

With appreciation

SERI

Shouping Liu R. Lakshminarayanan Thet Aung Zhou Lei Donald Tan Jun Jie Koh S. Padamanbhan Jod Mehta Hanxun Zou Xiaping Dai Eunice Goh

University of Geneva Howard Reizman

NUS Engineering Seeram Ramakrishna NTU School of Biological Sciences Konstatin Pervusin Bai Yong

Bioinformatics Institute Chandra Verma Jianguo Liu (SERI)

Genome Institute Swaine Chen

SGH-Pathology Tan Ai Ling

Funding: NMRC, BMRC, TCR-NRF, SingHealth Foundation, Exploit

Thank you

