Characterization of Soil Resilience as influenced by Organic Management Practices in Perturbed *Vertisol*

Ritesh Saha

ICAR- Indian Institute of Soil Science Nabibagh, Berasia Road, Bhopal – 462 038

Introduction

- Soil degradation declines soil's inherent capacity to produce economic goods and perform ecological functions (Lal, 1993).
- ➤It is accelerated by anthropogenic disturbances is a major problem for the natural ecosystem.
- Soil degradation has emerged as an important issue due to adoption of inadequate or improper management practices.

HIP STUI ICAR

Soil Resilience

- ➤ the capacity of a soil to recover its functional and structural integrity after a disturbance (Herrick and Wander, 1998; Lal, 1997 & 1993; Blum and Santelises, 1994; Sombroek, 1994).
- > the capacity of a soil to resist change caused by disturbance (Rozanov, 1994; Lang, 1994).

This concept of "resistance to change" is different from resilience

Soil Resistance

> the capacity of a soil to continue to function without change throughout a disturbance (Seybold et al, 1999).

Factors affecting Soil resilience and resistance

- **≻Soil type**
- >Land use/Nature of vegetation
- >Climate
- > Disturbance regime

Rationale

- Black soils are problematic in nature in terms of soil quality and resilience.
- The black soil (*Vertisols*) possesses low strength to undergo excessive volume changes, cracks are unique feature in the soil with strong shrink-swell potential.

Objective

• To study the effect of organic amendments on soil resilience in relation with soil physical and biological properties under *Vertisol*

Soil Physical Properties

Soil physical properties	Mean Value
Soil texture	Clay
Clay content (%)	49.23
Bulk density (Mg m ⁻³)	1.45
Total Organic carbon (%)	0.97
Walkley Black carbon (%)	0.40
Water stable aggregates (%)	52.42
Mean weight diameter (mm)	0.89
Plasticity index	33.68
M.C at field capacity (%)	29.70
M.C at PWP (%)	17.81

3rd International Conference on Agriculture & Horticulture, Oct 27-29, 2014

Soil Fertility Status

Soil properties	Mean value
Available N (kg/ ha)	201
Available P (kg/ha)	4.0
Available K (kg/ha)	533.7
Total N (%)	0.067
C: N ratio	12.7

Treatment details

- > T_o :control (without soil amendment)
- > T₁: FYM @ 25 t ha⁻¹
- > T₂:Biochar @ 25 t ha⁻¹
- > T₃:poultry manure @ 25 t ha⁻¹
- > T₄:Fly ash @ 1% weight basis
- > T₅:T₁+Fly ash @ 1% weight basis
- >T₆: T₂+Fly ash @ 1% weight basis
- > T₇:T₃+Fly ash @ 1% weight basis

Various soil amendments

Chemical composition of amendment

Properties	Farmyard manure	Biochar	poultry manure	Fly Ash
pH (1:10)	6.82	8.4	7.15	7.8
EC (1:10) dS m ⁻¹	2.99	0.62	5.14	6.53
Total organic carbon (%)	15.55	60.64	31.25	0.35
Total Nitrogen (%)	0.56	0.85	1.2	0.1
Total Phosphorus (%)	0.37	0.09	0.73	0.08
Total Potassium (%)	0.67	0.12	0.95	0.02

Experiment details

- > 500 g soil taken in plastic container for incubation study.
- Soil in sets of 3 replicates (container) was prepared for each treatments
- The soil was first pre-incubated for 5 days at 25°C under aerobic conditions to allow microbial activity to stabilize.
- The soil was mixed with these amendments and then transferred to the plastic container.
- After 10 days of interval, added distilled water (175 mL) for maintaining the moisture content to 60 % of the water holding capacity of the soil.

- ➤ After 24 hours, the soil samples were treated with CuSO₄.5H₂O (1g 500 g⁻¹ of soil) for destroying the microbial community.
- There were a separate set of soil samples, which is considered to be absolute control, as there was no Cu stress treatment.
- The soil along with the plastic container was then incubated in darkness for 10 weeks at 25°C.
- After 0, 2, 4, 6, 8, and 10 weeks of incubation, the plastic container of each treatment were removed and stored in plastic vials at 4°C until enzyme activity (DHA) and microbial biomass carbon (MBC) were determined.

CBR (Californian Bearing Ratio)

• It is the ratio of force per unit area required to penetrate a soil mass with standard circular piston.

- It indicates:
- the soil's resistance to force
- the swell and strength potential of soils

Resilient Modulous (M_r)

- Primary soil property: Dynamic Test
- Defined as the ratio between repeated deviator stress and resilient strain.

Calculated by:

Incubation study at a glance

SMBC (mgkg⁻¹ of soil) status of Vertisor under normal condition

DHA (μg TPF g⁻¹ soil h⁻¹) status of *Vertisol* under Cu Stress

3rd International Conference on Agriculture & Horticulture, Oct 27-29, 2014

DHA (μg TPF g⁻¹ soil h⁻¹)status of *Vertisol* under normal condition

Resistance and Resilience index under various management

	Treatments	Resistance index	Resilience index
T _o	Control	0.41	0.32
$T_{\mathtt{1}}$	FYM	0.55	0.68
T_2	Biochar	o.66	0.58
T_3	poultry manure	0.60	0.61
T ₄	Fly ash	0.57	0.57
T ₅	FYM + Fly ash	0.59	0.74
T_6	Biochar+ Fly ash	0.70	o. 66
T_7	Poultry manure+ Fly ash	0.61	0.70

CBR and Resilient modulous of Black soil under various treatments

Conclusion

- Soils treated with amendments rich in organic matter showed better performance in terms of soil resilience. Fly ash along with organic amendments had better resilience.
- FYM with fly ash treated soil is highly resilient because biological properties of soil increased (SMBC and DHA) and bio-char with fly ash treated soil is highly resistant.
- Study suggested that fly ash along with organic amendments like FYM or poultry manure can be used for better resilience in vertisols of Central India.

Thank you all

Resistance & Resilience index

(Orwin & Wardle, 2004)

The upper line represents the undisturbed control soil (C) and the lower line represents the disturbed soil (P): For resistance (i.e. time 0 or t_0), the value for the control soil is C_0 ; the value for the disturbed soil is P_0 ; and

$$C_0 - P_0 = D_0$$

An example of the data used to show resilience is given at t_x ; with the value for the control soil as C_x ; the value for the disturbed soil as P_x and the difference between the two as D_x Time x can be any time point beyond t_0

Calculations for Indices

• Resistance index at
$$t_0 = 1 - \frac{2|D_0|}{(C_0 + |D_0|)}$$

• Resilience index at
$$t_x = \frac{2 |D_0|}{(|D_0| + |D_x|)} - 1$$

• where Do is the difference between the control (C_o) and the disturbed soil (P_o) at the end of the disturbance (t_o) and D_x is the difference between the control (C_x) and the disturbed soil (P_x) at the time point (t_x) chosen to measure resilience (**Orwin & Wardle**, 2004)

Some moments of compaction study

Some moments of compaction study

