

Will Extremes Become the Norm under Future Climate Change?

Renalda El-Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov and Mutasem El-Fadel

October 25, 2016

Introduction	Study	Results
 Climate change is worldwide In-depth assessments strategies This is especially (complex topograwater scarcity, poincrease in population increase in temperation decrease in precise) 	an imminent threat to water ents of local impacts are a m needed in the eastern Medite phy, verty, ation, erature, bitation)	<text><text><text></text></text></text>

 Over complex topographic region, we expect an uneven distribution of extreme events (heat waves, droughts, flooding) Corresponding future climate cannot be evaluated by Global Climate Models (GCMs) only, due to their coarse resolution High resolution regional climate models (RCMs) are now used to dynamically downscale results from GCMs, to produce information at a local scale necessary to assess climate change impacts 	Introduction	Study	Results
The COMET Program	 Over complex tope extreme events (h Corresponding fut Models (GCMs) or High resolution readynamically down local scale necessary 	ographic region, we expect an eat waves, droughts, flooding ure climate cannot be evaluat nly, due to their coarse resolut gional climate models (RCMs) scale results from GCMs, to p ary to assess climate change in	<section-header><text><text><text></text></text></text></section-header>

Lebaupin Brossier et al., 2009

Introduction	Study	Results

- GCM: HiRAM (resolution 25km)
- RCM: WRF, 2 domains (9:3km)
- One-way nesting (no nudging)
- MODIS (2001) land use data
- Dynamics and physics:
 - Dudhia SW radiation
 - RRTM LW radiation
 - Eta PBL scheme
 - Noah LSM
 - WSM 6-class microphysics scheme
- Vertical levels: 28
- HiRAM IC/BC/SST every 6hrs

Introduction	Study	Results
□ Select the two extreme years for the past (a mild/wet year, and a hot/dry year) and eight years in the future (one hot/dry year per RCP per decade) based on the following anomaly score: $Anomaly Score = \frac{1}{2} \left(\frac{P_i - \langle P_i \rangle}{max(P_i - \langle P_i \rangle)} + \frac{-(T_i - \langle T_i \rangle)}{max(T_i - \langle T_i \rangle)} \right)$		d/wet year, and a hot/dry year per RCP ore: $\frac{-(T_i - \langle T_i \rangle)}{\max(T_i - \langle T_i \rangle)}$
 <i>P_i</i> is the cumulative precipitation for year <i>i</i> <i>⟨P_i⟩</i> is the decadal-average of yearly precipitation <i>P_i</i> <i>T_i</i> is the yearly median temperature for year <i>i</i> <i>⟨T_i⟩</i> the decadal-average of median temperatures <i>T_i</i> 		itation P _i r i ratures T _i
The resulting mini critical/worst vear	mum negative score will corre	espond to the resources perspective

Introduction

Study

Study

Introduction

Results

Introduction

Results

Introduction	Study	Results
	Hydrological Impacts	
Increase in consection 75% in mountains	utive dry days (CDD) (up to	INLAND NORTH
Decrease in conse in inland regions)	cutive wet days (CWD) (> <mark>50%</mark> CO	
Decrease in days very heavy rainfall inland zones)	of heavy rainfall (R10MM) and (R20MM) (up to <mark>50%</mark> in	Beirut International Airport
Decrease in maxin regions except on where WRF project	num one day precipitation (all the mountains, ted a slight increase)	Hadech al Omara INLAND CENTRAL INLAND 0 510 20 30 40 km SOUTH

Introduction	Study	Results
This research focused on extreme future weather over the complex region of the Eastern Mediterranean: we found that these extremes will be significantly exacerbated by climate change.		
All WRF future simulations projected a warming over the study region with different intensities depending on the year and/or RCP under consideration, with the worst case scenario occurring in the inland and the mountainous regions		g over the study region r and/or RCP under urring in the inland and
A significantly drie predicted by the m	r climate over nearly the enti niddle of this century, with rea	re study area is duction in annual

- predicted by the middle of this century, with reduction precipitation of about 30%
- Precipitation (and snowmelt) in mountains feeds the most productive agricultural regions and these changes <u>could</u> undermine future production due to future water shortage

Acknowledgments

USAID-NSF PEER initiative (Grant Number –AID-OAA-A_I1_00012), US National Science Foundation (Grant # CBET-1058027), NCAR (Project P36861020) and KAUST Supercomputing Laboratory

Thank you

Questions?

World Conference on Climate Change 2016 Climate Change October 24-26, 2016 Valencia, Spain

