2nd International Conference on Endocrinology Chicago - October 19-22

Stress-induced endocrine responses and anxiety: the effects of comfort food

Regina Célia Spadari

Obesity

- Prevalence of overweight and obesity.
- In the USA approximately two thirds of the population is overweight, and nearly one third is obese.

- The causes of the epidemic obesity are complex, and stress has been identified as an important factor.
- Increased rates of obesity have been accompanied by a concomitant rise in perceived stress in North America.

Components of stress system

Table 1 Main outcome measures and tests of differences between top vs. bottom stress quartiles.					
	n	High stress	Low stress	р	
Emotional eating (1–5 scale)	19	3.16 (1.39)	2.18 (0.95)	.05	
Saggital diameter (cm)	31	20.92 (5.30)	18.24 (4.09)	.05	
BMI	32	25.97 (4.26)	23.89 (3.24)	.04	

Epel et al., 2004

One subset of the population increases food intake under stress and

conversely, another decreases food intake.

Block et al., 2009

Stress and food preference

Access to sucrose reduces the activation of the HPA axis in response to

stress.

 Consumption of more palatable food improves emotional states, as reflected by reduced anxiety- and depressive-type behaviors.

> Maniam and Morris, 2010 Ulrich-Lai et al., 2010

Stress models used in the Laboratory of Stress Biology

- Foot shock stress short-term stress (120 electric paw shock; 1 mA, 1 s; 30 min/day; 3 consecutive days).
- Chronic unpredictable mild stress (CUMS) 14 days.

Regular chow + comfort food

- Cafeteria diet
- High carbohidrate
- High lipids

Ortolani et al., 2011; 2014

• light intensity: 60 lux, behavior was registered during 5 min.

Analized parameters:

- number of entries
- time spent in the open and closed arms
- number of head dipping, rearing, fecal bolus, stretched-attend posture, risk assessment and grooming.

Analized parameters:

- latency of first crossing,
- time spent in the periphery and in the center
- number of crossing, rearing, grooming and fecal bolus.

Foot shock stress reduces the intake of regular chow but not that of comfort food

	Commercial chow		Comfort food	
	Control (20)	Stress (20)	Control (15)	Stress (15)
Commercial (g)	24.05 ± 0.77	21.90 ± 0.61^a	1.43 ± 0.30	$0.55\pm0.18^{\rm a}$
Comfort (g)	-	-	$21.77 \pm 0.59^{ m b}$	21.87 ± 1.39^{b}
Total calories (kJ)	409.6 ± 13.2	$372.9 \pm 10.4^{\circ}$	$490.2\pm10.9^{\circ}$	$478.7 \pm 29.5^{\circ}$
Gain body weight (g)	10.80 ± 1.14	8.95 ± 1.70	8.43 ± 0.83	6.53 ± 1.20

Ortolani et al., 2011

Many factors may be envolved:

- Activation of autonomic nervous system;
- Release of CRH, ACTH, glucocorticoids, leptin and insulin.

The mechanisms have not been clarified yet

CUMS reduces the intake of commercial chow and comfort food

Parameter	Group			
	CC-control	CC-CUMS	CC/CF-control	CC/CF-CUMS
Commercial chow intake (g/day) Comfort food intake (g/day) Total caloric intake (kJ/day) Initial body weight (g) Body weight gain (g)	$24.9 \pm 0.3 \\ 423 \pm 5 \\ 202 \pm 5 \\ 79 \pm 2$	22.9 ± 0.7^{a} $-$ 390 ± 12^{a} 192 ± 5 59 ± 4^{a}	$\begin{array}{c} 4.77 \pm 0.02 \\ 19.7 \pm 0.1^{\rm b} \\ 562 \pm 2^{\rm b} \\ 196 \pm 4 \\ 104 \pm 4^{\rm b} \end{array}$	1.06 ± 0.4^{a} $19.1 \pm 0.5^{a,b}$ $428 \pm 10^{a,c}$ 191 ± 6 74 ± 5^{a}

Comfort food intake attenuates endocrine response to foot shock stress and CUMS

Ortolani et al., 2011; 2014

- Foot shock stress reduces anxiety-like behaviors EPM.
- This effect is not altered by comfort food.

- Foot shock stress reduces anxiety-like behaviors EPM.
- This effect is not altered by comfort food.

	Commercial chow		Comfort food	
	Control (20)	Stress (18)	Control (12)	Stress (11)
Head dipping	13.85 ± 1.61	19.16 ± 2.85 *	12.58 ± 2.19	18.45 ± 2.07 *
Rearing	0	0	0	0
Fecal bolus	0.35 ± 0.18	0.61 ± 0.31	0.00	0.09 ± 0.09
Stretched-attend	13.05 ± 1.26	8.11 ± 1.19 *	12.25 ± 1.41	9.54 ± 1.25 *
Risk assessment	17.70 ± 0.92	13.44 \pm 1.23 *	11.50 \pm 0.73 *	9.63 ± 0.94 *
Grooming	0	0	0	0

• Foot shock stress associated to comfort reduces anxiety-like behaviors - open field.

	Commercial chow		Comfort food	
	Control (20)	Stress (18)	Control (12)	Stress (11)
Latency to first crossing (s)	9.05 ± 2.44	8.27 ± 0.99	5.16 ± 0.95	15.18 ± 4.53^{a}
Time spent in center (s)	48.95 ± 4.20	46.83 ± 6.33	31.33 ± 4.69	$85.09 \pm 23.37^{a,b}$
Time spent in periphery (s)	253.75 ± 5.52	253.16 ± 6.33	265.75 ± 4.96	$213.54 \pm 23.52^{a,b}$
Crossing	67.25 ± 4.51	74.11 ± 3.88	70.91 ± 9.35	59.90 ± 8.13
Rearing	39.45 ± 2.73	38.66 ± 2.45	36.75 ± 3.02	30.80 ± 3.79
Grooming	1.70 ± 0.23	2.16 ± 0.31	1.58 ± 0.19	1.54 ± 0.28
Fecal bolus	2.00 ± 0.46	0.55 ± 0.32	1.66 ± 0.68	1.36 ± 0.79

- CUMS (14 days) induces anxiety-like behavior EPM.
- This effect is not altered by comfort food

- CUMS (14 days) induces anxiety-like behavior open field.
- This effect is not altered by comfort food.

	Group			
	CC-control	CC-CUMS	CC/CF-control	CC/CF-CUMS
Parameter				
Latency to first crossing (s)	3.3 ± 0.7	3 ± 0.5	2.4 ± 0.4	3.8 ± 0.5
Time spent in centre (s)	51 ± 9.5	27 ± 5^{a}	42 ± 5.7	24 ± 3.8^{a}
Time spent in periphery (s)	249 ± 9.5	272 ± 4.5^{a}	258 ± 5.7	275 ± 3.8^{a}
Crossing	65 ± 7.4	64 ± 2.8	51 ± 2.6	64 ± 3.7
Rearing	44±5.2	34 ± 3.4	30.6 ± 3.3	32 ± 3.3
Grooming	2.5 ± 0.6	2.9 ± 0.4	2.3 ± 0.5	2.4 ± 0.5

Conclusions

The access to comfort food attenuates the corticosterone

response to stress but did not prevent anxiety-like behaviors of

rats exposed to chronic stress.

- Chronic oral corticosterone was recently reported to induce impressive metabolic changes in mice including weight gain, increased adiposity, elevated plasma leptin, insulin and triglyceride levels, and hyperphagia (Karatsoreos et al., 2010).
- This model has the added benefit of result in a late-night increase in plasma corticosterone, mimicking one of the most predictive factors in Cushing's syndrome (Yaneva et al., 2004).0

HCM system

ERROR: undefined OFFENDING COMMAND: '~ STACK: