

Novel Mesoporous Silicas and its Characterizations for Oil Adsorption from Produced Water Injected in Water Injection Projects using Fixed Bed Column Processes

BY Rasha Hosny Abdel Mawla Yousef

Egyptian Petroleum Research Institute

2016

Aim of the work

A novel direct single step synthesis of silica skeleton.

- Determination of chemical and physical characteristics of prepared compounds.
- the adsorption of oil as a standard method is used to evaluate the capacity of theMCM-41 to eliminate organic molecules from water.
- The objective of this study is to control, through an experimental evaluation, the fixed-bed adsorption on MCM-41, and to develop on this basis a model can predict the performances and the characteristics of the bed according to the operating conditions (initial concentration, flow rates and bed depth).
- Study the kinetic and thermodynamic parameter in batch process.
- Application of stand column to stimulate the field conditions.

INTRODUCTION

- □ What is produced water ?
- □ What is Produced Water Volume?
- □ Why Worry About Produced Water?
- □ What is produced Water Management ?
- What are technologies of produced water Treatment?

What is Produced Water?

- "Produced water" it is the water flows from reservoir to the surface with oil and gas production.
- to the sufface with on the Sus production
- □, Contains many chemical constituents
 - Salt content (salinity, total dissolved solids [TDS], electrical conductivity)
 - Oil and grease (Composite of many hydrocarbons and other organic materials)
 - Toxic inorganic and organic compounds or chemical additives
 - NORM

Why Worry About Produced Water?

- The total cost of managing large volumes of produced water includes;
 - The cost of constructing treatment and disposal facilities
 - The operation cost (chemical additives and utilities)
 - The managing cost of any residuals or byproducts
 - Permitting, monitoring, and reporting costs
 - Transportation costs
- Improper management can harm the environment
 - Expensive clean up
 - Bad publicity for company

Produced Water Volume

Largest volume waste stream from oil and gas production

- Worldwide estimate 77 billion bbl/year (2003 SPE paper)
- U.S. 15-20 billion bbl/year
 - ~ 1 billion bbl/year offshore Gulf of Mexico

Globally

For Every Barrel of Oil Produced 3 Barrels of Water Are Co-produced

Average Global Produced Water Volumes Increased by 20% in Last Two Years (DOE J. Vale)

• 3:1 Water /Oil Ratio Globally

• 10:1 Water/Oil Ratio for Mature Assets

Treatment of Produced Water

Offshore Discharge Regulations

PROJECT GOAL

NOW

Beard #1 Poker Fed CNW 15-85-44E THE FUTURE

HOW WE GET THERE

Reduced Water Production

Produced Water Management

Water Management Practices

- ✓ *Minimise* the volumes to Surface
- ✓ Maximise re-use of water by injecting into hydrocarbon producing formation
- ✓ *Reduce* footprint and cost
- ✓ Use beneficially all resources
- ✓ *Safeguard* open waters & aquifers

Wastewater Treatment Technologies

- Gravity separation
- Plate coalescence
- Enhanced coalescence
- Enhanced gravity separation
- Adsorption/Filtration

- Flotation separation
- Membrane filtration
- Electrodialysis (ED)
- Freeze-thaw/evaporation
- Biological treatment

Materials and Methods

Sample preparation

- Produced water contaminated with oil droplets (oily produced water, OPW) sample was kindly obtained from the local Egyptian oilfield.
- The OPW used in these experiments are being brought from oilfield exposed to the atmosphere

Results and Disscusion

Table (1) Extended analysis for brinewater sample

Total Dissolved Solids	244927.7mg/l	pH	7.2@,25 °C
Conductivity	23.2 x10 ⁻ ² mohs/cm@2.7 ^o C	Density	1.15770g/m@ 60F
Resistivity	0.04310ohm-m @24.5 ^o C	Specific gravity	1.15885
Salinity	244691.7mg/l	Hardness	18883.1mg/l

Constituents	mg/L	Constituents	mg/L
Lithium	5.60	Fluoride	2.20
Sodium	87175.00	Chloride	148298.00
Potassium	569.62	Bromide	119.00
Magnesium	1390.66	Nitrate	48.00
Calcium	4585.51	Hydroxide	Nil
Iron	5.30	Carbonate	Nil
Copper	Nil	Bicarbonate	231.80
Barium	Nil	Sulfate	2497.00
Strontium	Nil	_	

Catalysts preparation

MCM-41 was prepared by a direct precipitation synthesis method using cationic surfactant cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as a silicon source in basic conditions. Typically, at 30 °C, 16.2 g of CTAB was dissolved into a solution containing 145 mL of deionized water, 8.21 mL of TEOS and 32 mL of 30% NH₃ was then added drop wise and stirred vigorously for 12 h for hydrolysis of TEOS. The product obtained was filtered and dried under vacuum at 40 °C night over. The samples were annealed at 550 °C for 4h to remove the surfactant.

The low angle XRD patterns of mesoporous silica MCM-41

FT-IR Spectra

FTIR Spectrum of prepared MCM-41

Raman analysis

Raman Spectrum of prepared MCM-41

Surface structure properties

SampleC
constantS
BETV
mV
mC
c
mm)MCM-4198.71022.60.99

Data of BET surface area

N2 adsorption-desorption isotherm for MCM-41

Transmission Electron Microscope (TEM)

As evidenced by HRTEM image shown, MCM-41 possesses an order mesoporous structure. As revealed, a regular hexagonal array of uniform channels is exhibited indicating a highly ordered pore structure of MCM-41.

HRTEM image of prepared MCM-41

Isothermal study

Langmuir

Freundlich

The Langmuir equation Ceq/Qeq = 1/Qmb + Ceq/Qm

The Freundlich isotherm logQe = log Kf +1/n log Ce

Where Ceq is the equilibrium concentration of oil in solution (mg/L), Qeq is the amount of oil adsorbed; Qm and b is Langmuir constants.

Qe is the amount of oil adsorbed (mg/g), Ce is the equilibrium concentration of oil in solution (mg/L), and *K*f and n are constant integrates

Langmuir		Freundlich			
K	Qe	R ²	п	K	R ²
0.004951	930.297	0.982669	1.549759		0.924122

Langmuir isotherm

Langmuir Isotherm for the adsorption of oil onto silica

Freundlich isotherm

The Freundlich isotherm for the adsorption of oil onto silica

Adsorption Columns technique

Column Adsorption Studies

Effect of flow rate

Flow rate of oil adsorption on MCM-41 versus time

Column Adsorption Studies

Effect of bed height

Effect of the bed height for adsorption of oil on MCM-41

Where k_{Th} (mL/min.mg) is the Thomas model constant, qe (mg/g) is the predicted adsorption capacity, x is mass of adsorbent (g), Q is influent flow rate (mL/min), C₀ is initial solution concentration (mg/L), and Ct is effluent solution concentration (mg/L). The linear form of Thomas model is expressed as Equation (2).

Where k_{YN} (L/min) is the rate constant and τ (min) is thetime required for 50% adsorbate breakthrough. The linear form of Yoon-Nelson model is expressed as Equation (4)

Kinetic study of Thomas model

Table (4) Thomson model parameters

Flow (mL min ⁻¹)	k _{Th}	R ²	q (mg g ⁻¹)	SSE (%)
0.5	0.000175	0.999994	1113.795	0.001
1	0.00171	0.99585	100.7273	0.002
1.5	0.00017	0.88319	1259.224	0.006

Conclusions

- A novel mesoporous MCM-41 for oil removal from produced water on a continuous fixed bed study was synthesized by facile, simple and cost effective method
- The structure and surface morphology of prepared sample has been studied and the results reveal the formation of a pure hexagonal mesoporous structure with a high surface area of 1022 m²/g.
 - The effects of flow rate (0.5, 1 and 1.5 mL/min) and bed height (0.5, 1 and 1.5 mm)on the breakthrough characteristics of the adsorption system at constant the initial oil concentration(1000mg/L),were determined.

Conclusions

- The maximum removal(70.26%) was achieved for aflow rate of 0.5 mL/min and a bed height of 1.5 mm.
- Two models Thomas and Yoon–Nelson were applied to predict the breakthrough curves and to determine the characteristic parameters useful for column design.
- ✓ It was clear that the Thomas model fitted well the adsorption data with a correlation coefficient (R²) at different conditions.
- ✓ From the R²values,we suggested that the Thomas model was suitable for explaining the chemisorption of oil on MCM-41.

Conclusions

The model employed shows that the MCM-41 was suitable for adsorption of oil using fixed bed adsorption. We found that the new modified MCM-41 was useful in water treatment and future remediation processes.

