Laboratory-scale monitoring of CO2 sequestration using complex electrical conductivity and seismic property changes derived from seismic interferometry

Ranajit Ghose
Alex Kirichek, Deyan Draganov
Delft University of Technology, The Netherlands

Valencia, October 2016
The strategy to reduce greenhouse gas emission must combine:

1. Increased Energy Efficiency
2. More renewable energy production (incl. wind, solar, geothermal)
3. A wise implementation of Carbon Capture and Storage (CCS)

(Bellona Report, 2007)
Three storage options:

1. Deep unminable coal seams
2. Depleted oil and gas reservoirs
3. Deep saline aquifers
Reasons/Need for monitoring:
1. For process efficiency (for site development, track the migration)
2. For storage verification (containment: mass balance, saturation)
3. For safety (seal or cap rock integrity, leakage)
Reasons/Need for monitoring:

1. For process efficiency (for site development, track the migration)
2. For storage verification (containment: mass balance, saturation)
3. For safety (seal or cap rock integrity, leakage)

Monitoring techniques:

1. Direct sampling methods (chemical sensors, monitoring in wells)
2. Remote sensing methods (spaceborne satellites, geophysical methods)
Geophysical methods for monitoring CCS:

- Seismic
- Electromagnetic
- Gravity
- Geodetic
Seismic methods have the broadest applicability!

Sleipner Field, North Sea
(Chadwick et al., 2009)

Frio Formation, Texas
(Daley et al., 2008)
Four major issues that remain unresolved are:

1. Inability to monitor CO2 phases
2. Difficulty to monitor quantitatively CO2 saturation
3. Removal of the effect of overburden in seismics
4. Minimize seismic source-related variations
Four major issues that remain unresolved are:

1. Inability to monitor CO2 phases
2. Difficulty to monitor quantitatively CO2 saturation
3. Removal of the effect of overburden in seismics
4. Minimize seismic source-related variations
CCS monitoring: use of complex electrical measurements
We measure frequency-dependent impedance: amplitude $|Z|$ and phase ϕ:

We estimate effective complex permittivity:

We get effective complex conductivity:

\[\text{and} \quad \text{are related as:} \]
CCS monitoring: use of complex electrical measurements

The diagram shows a phase diagram with axes labeled 'Pressure [bar]' and 'Temperature [°C]'. The phase regions are color-coded and labeled as 'Liquid', 'Dense fluid', and 'Vapor'. The diagram includes arrows indicating the transition from one phase to another, with annotations '1' and '2'.
CCS monitoring: use of complex electrical measurements

a)

b)
CCS monitoring: use of complex electrical measurements

Complex Impedance

Amplitude

Phase
CCS monitoring: use of complex electrical measurements

Equivalent circuit representation for CO2 and brine saturation:

(Kavian et al., 2012)

To estimate the fitting parameters, minimize the residual R:

![Graphs showing frequency response of Zr and Zj](image-url)
CCS monitoring: use of complex electrical measurements

Graphs showing frequency response of impedance plots with various parameters.
Four major issues that remain unresolved are:

1. Inability to monitor CO2 phases
2. Difficulty to monitor quantitatively CO2 saturation
3. Removal of the effect of overburden in seismics
4. Minimize seismic source-related variations
Four major issues that remain unresolved are:

1. Inability to monitor CO2 phases
2. Difficulty to monitor quantitatively CO2 saturation
3. Removal of the effect of overburden in seismics
4. Minimize seismic source-related variations
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Wapenaar and Fokkema, 2006
However, in case of a lossy medium and/or one sided illumination, spurious events will appear → nonphysical or “ghost” events!
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Model of Sleipner CCS Field, North Sea
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Synthetic Model of Sleipner CCS Field, North Sea

SI Retrieval with Max 15 m Source Error

Base Survey

Monitor Survey
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Synthetic Model of Sleipner CCS Field, North Sea

Brine-to-CO2 saturation ratio:
(using Gassmann’s equation)

Base: 0.98 Monitor: 0.80 → Input Model
Base: 0.97 Monitor: 0.77 → From SI Ghosts
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Diagram showing the setup of seismic interferometry with labels for first and second series, distances in millimeters, and positions of receivers and sources.
- Aim: to monitor velocity changes in a reservoir during displacement of brine by ethanol

- Using retrieved ghost reflections

- (In practice the events can be identified using a vertical well or the difference in expected arrival times of reflections from the cap rock and the reservoir)
- Aim: to monitor velocity changes in a reservoir during displacement of brine by ethanol

- Using retrieved ghost reflections

- (In practice the events can be identified using a vertical well or the difference in expected arrival times of reflections from the cap rock and the reservoir)
- Aim: to monitor velocity changes in a reservoir during displacement of brine by ethanol

- Using retrieved ghost reflections

- (In practice the events can be identified using a vertical well or the difference in expected arrival times of reflections from the cap rock and the reservoir)
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Recorded arrivals and their interpretation

- Arr1 – P-wave reflection from bottom of epoxy
- Arr2 – converted-wave reflection
- Arr3 – free-surface multiple of Arr1
- Arr4 – S-wave reflection from bottom of epoxy
- Arr5 – P-wave reflection from bottom of sandstone
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Results from SI by CC

![Graph showing normalized amplitude vs. two-way travel time for different ethanol concentrations (100% brine, 1/3 ethanol, 2/3 ethanol, and 3/3 ethanol). Arrows indicate changes in amplitude.]
CCS monitoring: use of “ghost” arrivals in seismic interferometry
CCS monitoring: use of “ghost” arrivals in seismic interferometry

Results from transmission measurements

Normalized amplitude

Two-way travel time (ms)

100 % brine
1/3 ethanol
2/3 ethanol
3/3 ethanol
<table>
<thead>
<tr>
<th>Method</th>
<th>100 % brine: velocity (m/s)</th>
<th>1/3 ethanol injected: velocity (m/s)</th>
<th>2/3 ethanol injected: velocity (m/s)</th>
<th>3/3 ethanol injected: velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghost reflection</td>
<td>2544</td>
<td>2558</td>
<td>2611</td>
<td>2616</td>
</tr>
<tr>
<td>Transmission</td>
<td>2520</td>
<td>2607</td>
<td>2594</td>
<td>2596</td>
</tr>
<tr>
<td>Difference (%)</td>
<td>0.95</td>
<td>1.88</td>
<td>0.66</td>
<td>0.77</td>
</tr>
</tbody>
</table>

CCS monitoring: use of “ghost” arrivals in seismic interferometry
CCS monitoring using ghosts in SI

- Layer-specific changes in velocity monitored using ghost reflections retrieved from SI by cross-correlation of reflection measurements
- The effect of overburden and source positioning error minimized
- Good saturation estimates
Conclusions

CCS monitoring using complex electrical measurements

- Real part of complex permittivity is clearly sensitive to CO$_2$ phase changes
- Both the amplitude and phase of the phase of complex impedance shows significant sensitivity to CO$_2$/brine saturation \rightarrow inversion
- Ongoing work: upscaling the results to field

CCS monitoring using ghosts in seismic interferometry

- Layer-specific changes in velocity can be monitored using ghost reflections retrieved from SI by CC between reflection measurements
- The effect of overburden and source positioning error can be minimized
- Saturation estimates are quite accurate
Acknowledgements:

Funding:
- STW, Dutch Technology Foundation
- NWO, Netherlands Organisation for Scientific Research
- National Programme CATO2

Lab Assistance:
 Karel Heller, Jan Etienne

Field Assistance:
 Alber Hemstede