

Invariant Mathematical Structures & Angular Momentum in Ocean Dynamics and Implied drift of Oceanic Monopolar Planetary Vortices

> Ramses van der Toorn Delft University of Technology

The Netherlands: water land

Delft University of Technology

Math, Computer Sc. and E-Engineering

Maritime Engineering

Geo- and Civil Engineering

Overall Research Theme

Math, Computer Sc. and E-Engineering

Application / Applicability of Math to Conceptual Understanding of Processes in the Oceans

This Presentation

Math, Computer Sc. and E-Engineering

Application / Applicability of Math to Conceptual Understanding of Processes in the Oceans

Intrinsic Drift of Monopolar Vortices

Mesoscale Oceanic Monopoles

Gulf Stream Rings...

swirling phytoplankton where warm Kuroshio Current collides with the frigid Oyashio Current

Ring shed from Agulhas current Strong Western Boundary Currents Shed Strong Oceanic Vortices

Mesoscale Oceanic Monopoles

Observed zonal transport by mesoscale eddies in the oceans:

"..magnitude comparable to large scale wind- and thermohaline-driven circulations."

(Zhang & Qiu, Science, June 2014)

Intrinsic Drift; Observations

Scientific Method

<u>Applied Math /</u> <u>Mathematical Physics</u>

Sc. Method: "Mathematical Structures 1"

Simple Mathematical Structures in the Ocean Sciences:

Directly observable:

 scalar fields: density distributions

vector fields: velocity distributions

Structure of an Anti-Cyclonic Gulf Stream Ring (Joyce, JPO, 1984)

Sc. Method: "Mathematical Structures 2"

Fundamental Mathematical Structures in the Ocean Sciences:

"Laws of Nature":

Universal, preserved, obeyed patterns in the apparently ever changing world

Differential Equations :

- conservation laws:
 - e.g. mass
 - dynamics:
 - e.g: momentum balance

Sc. Method: "Implications of the Laws"

Fundamental Mathematical Structures in the Ocean Sciences:

Mathematical Structures 3

Deeper Mathematical Structures in the Ocean Sciences:

Remark: *functions* describing observable "Invariants" fields *change* with change of coordinate system behind these different *descriptions*, are the invariable, independently existing entities. **Geometrical Objects :** branches of Mathematics: general tensor calculus group theory

Mathematical Structures 3

Deeper Mathematical Structures in the Ocean Sciences:

Game: change coordinates and construct objects that don't change along.

Invariants

Invariants: what lies *behind* the coordinate representations??

Symmetry of a Sphere

A Sphere is symmetrical

- Shape is *invariant*, when we rotate it.
- An infinite sea of possible rotations exists.
 - We can e.g. choose from an infinite amount of different orientations of the axis of rotation.

<u>Sophus Lie (1842 – 1899)</u>

\mathbf{r}_1 \mathbf{r}_2 Rotations: **Lie group** so(3): All rotations can be generated from a weighted sum of 3 basic generators r₃ product [.,.]: $[\mathbf{r}_1, \mathbf{r}_2] = -\mathbf{r}_3$ and cyclic => "Lie Algebra"

=> closed structure, under this sum and product,

Rotations: **Lie group** so(3):

- All rotations can be generated from a weighted sum of 3 basic generators (=> <u>3-dimensional</u>)
- Lie product [.,.]: $[r_1, r_2] = -r_3$ and cyclic => "Lie Algebra"

inner product: $\langle \mathbf{r}_i, \mathbf{r}_i \rangle = \delta_{ii}$ => enables projection of fields onto the so(3) algebra ...

- inner product: $\langle \mathbf{r}_i, \mathbf{r}_i \rangle = \delta_{ii}$

=> enables *projection* of fields onto the so(3) algebra ...

- so any vector field has 3 independent so(3) components
- one can construct the dynamics of these!

$$\begin{split} \bar{\lambda} & (\cos(\theta)^2 m + \sin \theta \left(-\sin(2\theta)(\alpha) \right) \\ & + (\Omega + \dot{\lambda}) \sin(\theta)^2 \frac{dm_{r^2}}{dt} + \sin(\theta) \frac{d}{dt} \{\tau_0 \parallel \rho \vec{v}\} = 0. \ (42) \\ & + (\Omega + \dot{\lambda}) \sin(\theta)^2 \frac{dm_{r^2}}{dt} + \sin(\theta) \frac{d}{dt} \{\tau_0 \parallel \rho \vec{v}\} = 0. \ (42) \\ & \bar{\lambda} & (\frac{1}{2} \sin(2\theta)(m_{r^2} - m)) + \\ & \dot{\theta}[(\Omega + \dot{\lambda})(2\sin(\theta)^2 m + \cos(\theta)^2 m_{r^2}) \\ & -\sin(\theta) & \{\tau_0 \parallel \rho \vec{v}\} \\ & + \frac{1}{2}(\Omega + \dot{\lambda})\sin(2\theta) \frac{dm_{r^2}}{dt} + \cos(\theta) \frac{d}{dt} \{\tau_0 \parallel \rho \vec{v}\} = 0. \\ & m \theta + \frac{1}{2}m\sin(2\theta) \dot{\lambda} & (\dot{\lambda} + 2\Omega) = (44) \\ & (\Omega + \dot{\lambda})\cos(\theta) & \{\tau_0 \parallel \rho \vec{v}\}. \end{split}$$

A Mathematical formulation:

 • Mathematical formulation:

 • 3 equations (ODE): one for each basis element of the so(3) Lie algebra:

 • momentum balance is projected on these

 • Physics: Integral Angular Momentum Equations.

 • Mathematical Physics. August 2010

The Angular Momentum Balance

$$\ddot{\lambda} \left(\cos(\theta)^2 m + \sin(\theta)^2 m_{r^2} \right) + \dot{\theta} \left(-\sin(2\theta)(\Omega + \dot{\lambda})(m - \frac{1}{2}m_{r^2}) + \cos(\theta) \left\{ \tau_0 \parallel \rho \, \check{v} \right\} \right) + (\Omega + \dot{\lambda})\sin(\theta)^2 \frac{dm_{r^2}}{dt} + \sin(\theta)\frac{d}{dt} \left\{ \tau_0 \parallel \rho \, \check{v} \right\} = 0.$$
(42)

$$\begin{aligned} \ddot{\lambda} & \left(\frac{1}{2}\sin(2\theta)(m_{r^{2}}-m)\right) + \\ \dot{\theta}\left[\left(\Omega+\dot{\lambda}\right)\left(2\,\sin(\theta)^{2}\,m+\cos(\theta)^{2}\,m_{r^{2}}\right) \\ & -\sin(\theta)\left\{\tau_{0}\parallel\rho\,\breve{v}\right\}\right] \\ & +\frac{1}{2}(\Omega+\dot{\lambda})\sin(2\theta)\frac{dm_{r^{2}}}{dt} + \cos(\theta)\frac{d}{dt}\left\{\tau_{0}\parallel\rho\,\breve{v}\right\} = 0. \end{aligned}$$

$$(43)$$

$$m\ddot{\theta} + \frac{1}{2}m\sin(2\theta)\dot{\lambda}\left(\dot{\lambda} + 2\Omega\right) =$$

$$(44)$$

$$(\Omega + \dot{\lambda})\cos(\theta)\left\{\tau_0 \parallel \rho\,\breve{v}\right\}.$$

- Mathematical formulation:
 - 3 equations (ODE): one for each basis element of the so(3) Lie algebra:
 - momentum balance is projected on these
 - Physics: Integral Angular Momentum Equations.

(v.d Toorn & Zimmerman; Journal of Mathematica Physics, August 2010)

Results: Velocities, Trajectories.

FIG. 2: Longitudinal velocities v_{λ} (cm s⁻¹) as a function of time t (days) of, from top to bottom, a cyclo-geostrophic cyclone, a geostrophic cyclone, a geostrophic anticyclone and a cyclo-geostrophic anticyclone. All these vortices had a Gaussian profile and obey the full angular momentum equations

(v.d Toorn & Zimmerman; *Journal of Mathematica Physics*, August 2010)

FIG. 3: Trajectories of several geostrophic anti-cylones as found by numerical integration. At t = 0 the vortices are released at several latitudes near $\theta = 30^{\circ}$. They also have different initial longitudinal velocities. The vortex that starts at 30° has initial velocity λ'_0 as given by equation (63). Overall the vortices have initial velocities $(1 + c)\lambda'_0$, where, from bottom to top, $c = -3, -2, -1, -\frac{3}{4}, -\frac{1}{2}, -\frac{1}{4}, 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 2, 3$.

Ocean Vortex Angular Momentum Balance

Inventory of Results

- 1. Reproduced Intrinsic Westward Drift of Oceanic Monopoles
 - a. right direction, correct speed, including well known integrals in GFD lit. for this speed
 - b. global result: "westward" = along latitude circles
- 2. <u>Demonstrated</u> that 1 is implied by Classical Fluid Mechanics, projected onto so(3).
- 3. Results at a deeper level:
 - 1. identified relevant *invariants* (metric, isometry group)
 - 2. shown how these form building blocks for the "laws of nature"
 - 3. show how all this *implies* vortex drift
 - 4. unified *vortex drift* with *rigid body mechanics ("spinning tops")*

Thank you. Any questions?

"The Problem of Scientific Knowledge*"

Mathematical Structures in the Ocean Sciences:

Constant Quantities

**: Pythagoras (Πυθαγόρας) (572 – 500 BC)

and Qualities..

Plato (427 - 347 BC.)

..in the real world, which is *in flux*.

Heraclitus (Ephesus,535 – c. 475 BC), by Johannes Moreelse(1603-1634)

*cf, eg: "Logik der Forschung", Karl Popper (1935)

The Full Picture: Vortex on a Rotating Sphere

- Broken Spherical Symmetry
 - Due to spinning of planet
 - => Angular Momentum Dynamics
 - Not Constant Angular Momentum
 - <u>Yet</u> (Relatively) Simple Dynamics

Angular Momentum Dynamic Balance

- Rate of Change of Total Angular Momentum
- Horizontal Surplus/Deficit of Gravitation in Coordinate System, fixed to the Vortex, hence Rotating with Respect to the Planet.

(v.d Toorn & Zimmerman; *Journal of* Mathematica Physics, August 2010)

Dimension of Group of Rotations

Spinning sphere: big centrifuge

- situation's dimension?
 - A: 1 dominating axis of spin!
 - B: 2
 - C: 3
 - D: infinite

On a *spinning homogeneous sphere*, the size of the earth, the depth of the oceans would be:

- if 2 km at the poles
- then 13 km at the equator!

Real Planet: Horizontal Gravitation

In reality, the oceans are approximately of constant depth all over the planet Centrifugal effect tends to make it considerably deeper at the equator that at poles,

• however, it is compensated...

Horizontal Gravitation

- Ocean is approximately of constant depth all over the planet
- Centrifugal effect tends to make it considerably deeper at the equator that at poles
- Hence centrifugal force must be balanced:
 - By horizontal component of gravitation
 - as induced by deformation of the solid planet.

Horizontal Gravitation

- Centrifugal force is balanced:
 - By *horizontal* component of gravitation
 - as induced by a deformation of the planet.
 - only a *slight* deformation is sufficient:
 - this deformation is *geometrically* negligible.

(v.d.Toorn & Zimmerman, J.Geophysical Astrophysical Fluid Dynamics, August 2008)

The shallow ocean

• situation's dimension?

- A: 1
- B: 2-dimensional sheet of fluid on a sphere!
- C: 3
- D: infinite
- Because the depth of the ocean (~4 km) is small compared to
- vortex size (> 100 km)
- earth radius (~ 6360 km)

