

Development of Nanocomposite Polymer Electrolytes (NCPEs) in Electric Double Layer Capacitors (EDLCs) Application

UNIVERSITY OF MALAYA, MALAYSIA

- 1) Introduction
- 2) Problem Statement
- 3) Literature Review
- 4) Methodology
- 5) Results and Discussion
- 6) Conclusions

INTRODUCTION

LITERATURE REVIEW

C.I.U.M. Centre For Ionics UNIVERSITY OF MALAYA Since 2007

ELECTRIC DOUBLE LAYER CAPACITORS (EDLCS)

Longer cycle life

Higher power density Higher capacitive density

Faster charge– discharge rate Higher ability to be charged and discharged continuously without degradation

Inexpensive

Disadvantages of AC¹⁶ **CNT**

Hard diffusion

Limit the accessibility of charge carriers

High microporosity (pore dimension: <2nm)

IF 3	C.I.U.M. Centre For Ionics UNIVERSITY OF MALAYA Since 2007 UNIVERSITY OF MALAYA Since 2007	18
	MATERIAL	ROLE
	Poly (vinyl alcohol) (PVA)	Polymer
	1-butyl-3-methylimidazolium bromide	Ionic liquid
	(BmImBr)	
	Silica (SiO ₂) (70nm)	Fillers
	Titania (Ti O_2) (40–50nm)	
	Zirconia (ZrO ₂) (<100nm)	
	Alumina (Al_2O_3) (<100nm)	
	Distilled water	Solvent

METHODOLOGY

C) EDLC FABRICATION & CHARACTERIZATION

Configuration: electrode/polymer electrolyte/electrode

Figure 1: The fabricated EDLC using the highest conducting ionic liquid–added polymer electrolyte from each system.

Cyclic Voltammetry (CV)
Galvanostatic Charge–Discharge (GCD)

RESULTS AND DISCUSSION

Figure 2: The logarithm of ionic conductivity of polymer electrolyte at different mass fraction of (a) SiO₂ and (b) ZrO₂.

Figure 3: The logarithm of ionic conductivity of polymer electrolyte at different mass fraction of (a) TiO₂ and (b) Al₂O₃.

Temperature Dependent–Ionic26Conductivity Studies

Figure 4: Arrhenius plot of filler-free polymer electrolyte and filler-doped NCPEs.

C.I.U.M. Centre For Ionics UNIVERSITY OF MALAYA Since 2007

Sample	Activation energy, E_a (eV)	Log A	Pre–exponential constant, A
Filler–free system	0.2751	-2.8442	1.43×10-3
Si system	0.2119	-1.8396	0.0145
Zr system	0.1431	-0.7513	0.18
Ti system	0.1413	-0.7307	0.19
Al system	0.1280	-0.4834	0.33

Figure 5: Glass transition temperature (T_g) of polymer electrolytes.

_

Si system

-20 -15 -10 -5

0

—Filler–free system

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Temperature(°C)

-Zr system

—Ti system

-Al system

Figure 6: Crystalline melting temperature (T_m) of polymer electrolytes.

Figure 7 : Crystallization temperature (T_c) of polymer electrolytes.

Figure 8: LSV response of the most conducting polymer electrolyte from each system.

Cyclic Voltammetry (CV)

C.I.U.M.

Centre For Ionics

UNIVERSITY OF MALAYA

Since 2007

The Leader in Research & Innovation

Figure 9: Cyclic voltammogram of EDCL containing the most conducting polymer electrolyte from (a) filler–free system and (b) Si system.

Figure 10: Cyclic voltammogram of EDCL containing the most conducting polymer electrolyte from (a) Zr system, (b) Ti system and (c) Al system.

Galvanostatic Charge–Discharge Analysis (GCD)

Figure 11: Galvanostatic charge–discharge performances of EDLC containing (a) Si system and (b) Zr system over first 5 cycles.

Figure 12: Galvanostatic charge–discharge performances of EDLC containing (a) Ti system and (b) Al system over first 5 cycles.

System	Specific discharge	Coulombic	Energy	Power
	capacitance, C _{sp}	efficiency, η	density, E	density, P
	(F g -1)	(%)	(W h kg ⁻¹)	(W kg ⁻¹)
Si system	2.58	86	0.18	34.94
Zr system	4.16	40	0.36	36.76
Ti system	4.34	76	0.42	38.41
Al system	8.62	81	0.95	41.15

CONCLUSIONS

• Addition of nano-sized fillers

CIUM

Since 2007

Centre For lonics

JNIVERSITY OF MALAYA

- >Increases the ionic conductivity
- >Follows Arrhenius rules for the conduction mechanism
- Reduces the Tg and crystallinity
- >Improves the electrochemical stability window
- Enhances the electrochemical properties of EDLCs (i.e. capacitance)
- Alumina–based polymer electrolyte is a good choice as separator in EDLC

Supervision

Dr. Yugal Kishor Mahipal

Madam Lim Jing Yi

Miss Shanti Rajantharan

Mr. Mohammad Hassan Khanmirzaei

Mr. Vikneswaran Mr. Ng Hon Ming Rajamuthy

Mr. Mohd Zieauddin bin Kufian

Madam Rajammal

Mr. Ramis Rao

Mr. Lu Soon Chien

Miss Chong Mee Yoke

Miss Nurul Nadiah

WELCOME TO MALAYSIA

ner electrolyte

