About OMICS Group

OMICS Group is an amalgamation of Open Access Publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology ‘Open Access’, OMICS Group publishes 500 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 500 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.
OMICS International

Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 500 open access journals and conducts over 500 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.
New complexes of inhaled Furosemide and Cyclodextrin: Assessment of the bronchodilator effect

Ramadan Al-Shdefat, Ph.D
Pharmaceutics Department
College of Pharmacy
Prince Sattam Bin Abdulaziz University
Saudi Arabia
Introduction

• Furosemide, a loop diuretic, is practically insoluble in water (0.01825 mg/mL) and is degraded by light\(^1,2\).

• The bioavailability of orally administered furosemide in conventional dosage forms is poor and highly variable, and associated with low aqueous solubility, site-specific drug absorption, and first-pass metabolism\(^3\).
• Some studies showed that inhalation of furosemide alleviates dyspnoea by modulating vagal afferent activity in animal lung models4 and reduces the intensity of induced dyspnoea in healthy individuals5.

• Further studies suggested that nebulised furosemide might be effective against dyspnoea of asthma6 and lung cancer7.
• β-cyclodextrin (β-CD) is a natural cyclic oligosaccharide and several studies have reported a positive effect of CD complexation on the physicochemical characteristics of many hydrophobic drugs8.
Cyclodextrins contain 6, 7 or 8 dextrose molecules (α, β, γ-cyclodextrin) bound in a 1,4- configuration to form rings of various diameters.
• The ring has a hydrophilic exterior and lipophilic core in which appropriately sized organic molecules can form non-covalent inclusion complexes.

• Complexation relies on relatively weak force such as London forces, hydrogen bonding and hydrophobic interactions.
• Inclusion complexation with agents such as β-cyclodextrin (β-CD) is one method to increase the aqueous solubility of a poorly water-soluble drug and thereby its stability and bioavailability⁹.
Aim of the Study

The objective of this study was to investigate the efficacy of nebulised furosemide administered singly or in combination with β-cyclodextrins (β-CDs) on asthma exacerbations in children.
Methods

Drugs

- The inclusion complexes of furosemide/β-CD in 1:1 and 1:0.5 molar ratios were prepared using the kneading technique, which is a simple, common and inexpensive method for preparing inclusion complexes.
THE KNEADING TECHNIQUE
THE INCLUSION COMPLEXES OF FUROSEMIDE

Furosemide
(330.74 mg)

β-CD
(1134.98 mg)
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION

Furosemide
(330.74 mg)

β-CD
(1134.98 mg)
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION

Furosemide (330.74 mg)

β-CD (1134.98 mg)

4 mL Water–Ethanol Solution (50% v/v)
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION

Furosemide
(330.74 mg)

β-CD
(1134.98 mg)

15MIN KNEADING

4 mL Water–Ethanol Solution (50% v/v)
THE INCLUSION COMPLEXES OF FUROSEMIDE β-CD PREPARATION

Furosemide (330.74 mg)

β-CD (1134.98 mg)

THICK SLURRY

4 mL Water–Ethanol Solution (50% v/v)
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION

24 HOUR DRYING AT 50°C
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION

FINAL POWDER

NO. 80 SIEVE
THE INCLUSION COMPLEXES OF FUROSEMIDE B-CD PREPARATION

STORED IN AIRTIGHT CONTAINER
The study was a single-blinded controlled randomised trial, involving five groups of children.

Group 1: 20 children received nebulised salbutamol (0.15 mg/kg)

Group 2: 20 children received nebulised furosemide (1 mg/kg)

Group 3: 20 children received nebulised salbutamol (0.15 mg/kg) plus nebulised furosemide (1 mg/kg)

Group 4: 20 children received a complex of furosemide/β-CD in a 1:0.5 molar ratio

Group 5: 20 children received a mixture of furosemide/β-CD in a 1:1 molar ratio
All drugs were dissolved in 4 mL normal saline before use in the nebulisation chamber.

Nebulisation was continued for 20 min until the nebulisation chamber was empty.

Pulmonary function was assessed by measuring:
- \(\text{FEV}_1 \) forced expiratory volume in 1 s;
- \(\text{FVC} \) forced vital capacity;
- \(\text{PFER} \) peak expiratory flow rate;
- \(\text{RR} \) respiratory rate;
- \(\text{SaO}_2 \) arterial oxygen saturation in each patient before and 30 min after medication.
RESULTS
AND
DISCUSSION
Table: Clinical outcomes before and after treatment in the five studied groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Nebulised furosemide</th>
<th>Salbutamol plus furosemide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30 min</td>
</tr>
<tr>
<td>FEV₁ (% of predicted value)</td>
<td>57.9±16.7</td>
<td>72.2±17.9</td>
</tr>
<tr>
<td>FVC (% of predicted value)</td>
<td>57.5±16.2</td>
<td>74.2±16.9</td>
</tr>
<tr>
<td>PFER (% of predicted value)</td>
<td>59.3±17.9</td>
<td>78.2±15.1</td>
</tr>
<tr>
<td>RR (breaths/min)</td>
<td>41.3±7.3</td>
<td>29.3±7.5</td>
</tr>
<tr>
<td>SaO₂, %</td>
<td>91.0±3.7</td>
<td>95.9±4.4</td>
</tr>
<tr>
<td>Wheeze score</td>
<td>2.7±0.7</td>
<td>1.9±0.6</td>
</tr>
<tr>
<td>Retraction</td>
<td>2.3±0.7</td>
<td>1.4±0.6</td>
</tr>
</tbody>
</table>

Values are mean±SD.

β-CD, β-cyclodextrin; FEV₁, forced expiratory volume in 1 s; FVC, forced vital capacity; PFER, peak expiratory flow rate; RR, respiratory rate; SaO₂, arterial oxygen saturation.

For Group 4 and Group 5, the table continues with similar data for Furosemide/β-CD (1:0.5) and Furosemide/β-CD (1:1) at 0 and 30 min, with p values indicating significance levels. The bar chart on the right visualizes the changes from baseline for different pulmonary function parameters, differentiated by treatment groups.
Complexes of furosemide and CD improve FEV1, FVC, peak flow rate, SaO$_2$ and clinical scores significantly as compared to salbutamol or furosemide alone. The complex effect was nearly equal to the effect of the furosemide and salbutamol combination.

These results suggest that CDs are promising solubility enhancers for improving the efficacy of poorly water-soluble drugs administered by inhalation.

Many Thanks For Your Attention
Table 1 shows the age and gender of the patients in the different groups;

<table>
<thead>
<tr>
<th>Score</th>
<th>Breathing rate/min</th>
<th>Presence of wheezing</th>
<th>Retraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><30</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>30–40</td>
<td>End expiratory</td>
<td>Intercostal/subcostal</td>
</tr>
<tr>
<td>2</td>
<td>41–50</td>
<td>Throughout expiration</td>
<td>Intercostal+subcostal</td>
</tr>
<tr>
<td>3</td>
<td>>50</td>
<td>Throughout inspiration and expiration</td>
<td>Intercostal+subcostal+cervical</td>
</tr>
</tbody>
</table>
Patients
Children were diagnosed as having asthma according to the American Thoracic Society criteria. Their characteristics are given in table 1.

The inclusion criteria were:
- Mild or moderate asthma exacerbation with a clinical asthma score (CAS) of between 1 and 6.
- Age between 6 and 18 years.
- Ability to perform a peak flow meter test.

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>11.6±3.0</td>
<td>10.4±2.3</td>
<td>12.4±2.3</td>
<td>11.7±2.3</td>
<td>12.4±2.3</td>
<td>0.9699</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>11/9</td>
<td>13/7</td>
<td>11/9</td>
<td>15/5</td>
<td>12/8</td>
<td>0.2734</td>
</tr>
</tbody>
</table>

Values are mean±SD.
Pulmonary function was assessed by measuring **forced vital capacity** (FVC) and **forced expiratory volume in 1 s** (FEV1) with a **computerised wedge spirometer** in each patient before and 30 min after medication.

Flow rates were measured using a **Mini Wright peak flow meter**.
Furosemide may interfere with the transport of ions such as Na+, Cl– and K+ via the mucous epithelium, changing the osmolality of secretions and simultaneously modifying bronchial reactivity. Thus furosemide may have a relaxing effect on smooth muscles.

Another explanation is that furosemide may reduce airway resistance and improve pulmonary distensibility by blocking the release of secondary constrictor mediators such as histamine or leukotrienes, leading to an increase in the exchange of gases.
Let us meet again..

We welcome you all to our future conferences of OMICS International

3rd World Congress on Pharmacology
On

August 08-10, 2016 at Birmingham, UK
http://pharmacology.pharmaceuticalconferences.com/