

University of Stuttgart Institute of Biochemical Engineering (IBVT) Allmandring 31, 70569 Stuttgart, Germany www.ibvt.uni-stuttgart.de

Escherichia coli HGT – a novel <u>h</u>igh <u>g</u>lucose <u>t</u>hroughput chassis especially designed for typical production conditions in large scale based on comprehensive systems biology studies

Ralf Takors July 20nd , 2017

> Systems & Synthetic Biology Meeting, Munich

Scaling-up *E. coli* Modelling Strain Responses Conclusions for Strain Engineering Transferring Results

Joana Simen
Michael Löffler
Alexander Niess

2022

Scaling Up

The way from the lab to the large-scale production

Takors, R (2015) J. Biotechnol

3 Takors, SysSyn Meeting, Munich

- Oxygen transfer rate (**OTR**) is limited (~150 180 mmol/Lh)
- Cooling capacities are limited

But: productivities (g/L_{reactor}h) should be maximized

Ideal Strain for Large-Scale Application

The ideal producer should: enable high glucose uptake rates, even under resting condition

be blind with respect to extracellular heterogeneities

Goal:

to create a novel *E. coli* **chassis** with fundamentally changed properties.

Drawback:

transcriptional responses under large-scale conditions not known

Approach:

To perform systems biology studies on large-scale performance for deriving guidelines for synthetic strain construction.

Successful Bioprocess Development Needs to Pass Multiple Scales

Scaling-up *E. coli*

- Impact of Glucose Gradients on Cellular Performance -

Plant engineering/construction and validation

 Development of a STR-PFR system to simulate oscillating gradients

- Volume PFR/ total volume: 25 %
- Online: temperature and oxygen
- thermally insulated

Simen, Löffler et al. 2016 Metabolic Engineering

 $(\tau_{PFR} = 125 \text{ s, Bo} = 83)$

STR-PFR Experiments With E. coli: Glucose Limitation

Simen, Löffler et al. 2016 Metabolic Engineering

9 Takors, SysSyn Meeting, Munich

Glucose:

Short-Term Responses

Intracellular Nucleotides (Carbon Limitation-Starvation)

Simen, Löffler et al. 2016 Metabolic Engineering

- Decreasing intracellular ATP-Concentration
- Increasing ADP-Level
- Fast Energy charge reduction (30 sec)
- Decreasing GTP-Level
- Sigmoidal ppGpp accumulation

Sequential response along the PFR < 30 sec: Reduced Energy charge < 70 sec: Decreasing GTP-Level 30-90 sec: Increasing ppGpp-Level

Transcriptional Response

Short-term Response on Glucose Limitation: Differentially Expressed (DE) Genes

Simen, Löffler et al. 2016 Metabolic Engineering

- Increasing limitation inside PFR
- Filter for DE genes
 - 1% false discovery rate
 - P5 down: 836
 - P5 up: 955
 - Fold change >1.5 fold
 - P5 down: 369
 - P5 up 266

→ Immediate DE response after entering PFR

- ,slow' dynamics < 70 s
- Transcriptional boost > 70 s

Differentially Expressed Genes (PFR outlet vs STR)

Simen, Löffler et al. 2016 Metabolic Engineering

Information storage and processing

- K Transcription
- L Replication, recombination and repair
- J Translation, ribosomal structure and biogenesis

Cellular processes and signaling

- O Posttranslational modification, protein turnover and chaperones
- D Cell cycle control, cell divison and chromosome partitioning
- T Signal transduction mechanisms
- M Cell wall, membrane, envelope biogenesis
- V Defense mechnisms
- U Intracellular trafficking, secretion, vesicular transport
- N Cell motility

Metabolism

- G Carbohydrate tranport and metabolism
- C Energy production and conversion
- E Amino acid transport and metabolism
- Lipids transport and metabolism
- P Inorganic ion transport and metabolism
- Q Secondary metabolites biosynthesis, transport and metabolism
- F Nucleotide transport and metabolism
- H Coenzyme transport and metabolism

Poorly characterized

- R General function prediction only
- S Function unknown

Differentially Expressed Genes (PFR outlet vs STR): 25, 120 min, 28h

Simen, Löffler et al. 2016 Metabolic Engineering

General finding:

14 Takors, SysSyn Meeting, Munich

 \rightarrow induction of carbon import, metabolism and energy generation \rightarrow repression of energy intensive processes

Glucose:

Long-Term Responses

Reference – before connection with PFR

Simen, Löffler et al. 2016 Metabolic Engineering

distinct initial state S₀ in STR

Phase I after connection with PFR

Simen, Löffler et al. 2016 Metabolic Engineering

- distinct initial state S₀ in STR
- strong transcriptional changes after PFR connection

Phase II after connection with PFR

Simen, Löffler et al. 2016 Metabolic Engineering

- distinct initial state S₀ in STR
- strong transcriptional changes after PFR connection
- transcriptional changes converge to a new steady-state

Repeated Transcriptional Shifts from STR to PFR

Simen, Löffler et al. 2016 Metabolic Engineering

- distinct initial state S₀ in STR
- strong transcriptional changes after PFR connection
- transcriptional changes converge to a new steady-state
- gradients in PFR cause trackable transcriptional changes leading to a stable distribution of transcriptional patterns

Gradients cause massive, periodic on-/off-switching of genes finally leading to stable transcriptional patterns coexisting next to each other

What can we learn from modelling?

What can we learn from modelling?

Predicting the Transcriptional Dynamics

Agent-Based Modelling For Predicting Transcript Dynamics

Agent (single cell)

- polymerase movement: constant elongation rate
 - constraint: minimum distance between ribosomes
- attenuation modelling neglected for simplification
 - Simplification: start only valid under nitrogen limitation
 - Transcription and translation are closely coupled
- Number of ribosomes per gene is variable and specific for the gene
- mRNA degradation considered with constant degradation elongation rate, initiated at start codon of transcription
- No protein degradation, only dilution by growth

Population (STR-PFR operating in continuous mode)

- STR = ideally mixed; PFR = plugflow reactor
- Population balances:
 - (1) PFR entering
 - (2) drained off by efflux
 - (3) cell division, no initiation of transcription
- Fate of 10.000 cells was tracked

Parameter	Value	Unit		
v _{elo}	21	Nucleotides per second	Elongation rate	
v Ribosome v elo	21	Nucleotides per second	Ribosome movement on mRNA	
v RNase velo	21	Nucleotides per second	RNAse degragation rate	
Δx	100	Nucleotides	Minimum distance between two RNAPs	
⊿у	100	Nucleotides	Minimum distance between ribosomes	
Δz	100	Nucleotides	Closest distance of RNAse to ribosome	
t _{ind}	[30 125]	Seconds	Induction period	
	180	mL min ⁻¹	Flow through PFR	
V _{Feed}	5	mL min ⁻¹		
V _{STR}	1,120	mL	Feed	
D	0.2	h ⁻¹	STR volume	
N ⁰ _{STR}	10,000	cells	Dilution rate of the system	

Total number of tracked cells

Once Initiated, Transcriptional (TC) Stimulus Propagates From PFR into STR Followed by Translation (TL): Example TRP Operon

Induction of trp operon during N-limitation

Niess et al. .2017. Frontiers in Microbiology

Key findings:

- Once initiated in PFR, transcription and translation continues in STR
- Mayor burden is located in STR
- Cells with different transcriptional patterns co-exist next to each other: population heterogeneity

Prediction of population transcript levels in STR

Agent based modeling tracking the fate of 10.000 cells

Dynamic along PFR

Distribution in STR

High prediction quality of short – and long-term transcriptional dynamics

What can we learn from modelling?

Deriving Constraints for Creating Robust Strains For Large-Scale Application

Modeling Assumptions for Estimating Cellular Efforts Periodically Switching Genes ON/OFF

Simen, Löffler et al. 2016 Metabolic Engineering

- Select transcripts with **FDR < 1%**
- Group in **up** and **downregulated** genes
- *De novo* precursor synthesis:
 - calculate individual ATP needs for G, A, T, C formation from metabolic precursors
 - calculate ATP needs for amino acid production assuming average protein composition
- Transcription: For each mRNA with individual G, A, T, C content: 2 ATP/nucleotide
- Translation: 4 ATP/amino acid
- Considering mRNA dynamics and PFR residence time: **11 ribosomes per mRNA**
- **Completing translation** after recycling in STR

Modeling Additional ATP Costs for Transcription and Translation

Individual ATP balances for each gene, reference: native maintenance

Simen, Löffler et al. 2016 Metabolic Engineering

Maintenance demands are increased by 40 – 50 % in large-scale! Represents missing energy for hyperproducers.

Exploiting the Results: Identifiers for Smart Genome Reduction

Top 20 Gene Targets for Deletion/Modulation Saving ATP

Simen, Löffler et al. 2016 Metabolic Engineering

Gene [†]	e ⁺ Percentage increasing the growth-independent maintenance, %			COG	Function
	De novo mRNA synthesis	Translation	Σ		
fliC	2.70	0.40	3.10	Ν	flagellar biosynthesis; flagellin, filament structural protein
aroF	0.67	0.10	0.77	Е	2-dehydro-3-deoxyphosphoheptonate aldolase (DAHP synthase)
aldA	0.48	0.07	0.55	С	aldehyde dehydrogenase A, NAD-linked
cstA	0.35	0.05	0.40	Т	peptide transporter induced by carbon starvation
aceA	0.34	0.05	0.39	С	isocitrate lyase monomer
cspD	0.31	0.05	0.36	Κ	DNA replication inhibitor
aceB	0.27	0.04	0.31	С	malate synthase A
trg	0.27	0.04	0.31	Ν	methyl accepting chemotaxis protein - ribose/galactose/glucose sensing
groL	0.26	0.04	0.30	0	GroEL chaperonin, peptide-dependent ATPase, heat shock protein
dnaK	0.24	0.03	0.27	0	chaperone protein DnaK
yfiA	0.18	0.03	0.21	J	stationary phase translation inhibitor and ribosome stability factor
gatC	0.17	0.03	0.20	G	galactitol PTS permease - GatC subunit
flgL	0.16	0.02	0.19	Ν	flagellar biosynthesis; hook-filament junction protein
flgK	0.13	0.02	0.15	Ν	flagellar biosynthesis, hook-filament junction protein 1
acs	0.13	0.02	0.14	I.	acetyl-CoA synthetase (AMP-forming)
mdh	0.12	0.02	0.14	С	malate dehydrogenase
kgtP	0.11	0.02	0.12	Е	α-ketoglutarate: H+ symporter
fliA	0.11	0.02	0.12	к	RNA polymerase, sigma 28 (sigma F) factor
gInH	0.10	0.02	0.12	Е	glutamine ABC transporter - periplasmic binding protein
yjdA	0.10	0.01	0.11	n.a.	clamp-binding sister replication fork colocalization protein

[†]Only genes which expression was always significantly changed between STR and PFR P5 (FDR < 0.01) were selected for the calculations (core genes).

Ongoing research

Transferring Results: *E. coli* HGT

Ideal Strain for Large-Scale Application

Michalowski et al, 2017 Metabolic Engineering

The **ideal producer** should:

- be blind with respect of extracellular heterogeneities
- enable high glucose uptake rates, even under resting condition

Engineering E. coli HGT Following Two Guidelines

HGT = high glucose throughput

Michalowski et al, 2017 Metabolic Engineering

RelA Hydrolase activity

E. coli HGT

Michalowski et al, 2017 Metabolic Engineering

Installing ammonia limitation under glucose saturated conditions to test engineered strains

E. coli HGT

Includes *ace*E* + changes in *rel*A and *spo*T

Michalowski et al, 2017 Metabolic Engineering

E. coli HGT shows no ppGpp changes under ammonia limited conditions, i.e. no stringent response initiated

E. coli HGT provides a surplus of pyruvate for downstream use.

E. coli HGT shows about 10 fold higher glucose uptake for non-growing conditions than needed for maintenance demands and reaches maximum uptake with 0.3 1/h. The surplus of carbon is available as pyruvate predominately.

Summary & Thanks

- Mixing times of max 70 s should be installed preventing massive transcriptional responses
- Massive transcriptional dynamics are induced by substrate heterogeneity causing maintenance increase (1.4-1.5 fold).
- Maintenance dynamics and transcriptional adaptation can be well modelled/predicted.
- Large-scale performance can be simulated.
- Novel chassis *E. coli* HGT created.

ThanksJoana Simen, Michael Löffler,to:Annette Michalowski, Alexander Niess

Thanks for Cooperation:

- IMG (AG Riess, Tübingen) for transcript measurements
- IMB (AG Sprenger) for reporter strain construction

Funding: Thanks to BMBF (eBio ,ReCOgNice), EU (ST-Flow)

Different Time Scales of Response

Niess et al. .2017. Frontiers in Microbiology

