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Scaling Up

The way from the lab to the large-scale production

Takors, R (2015) J. Biotechnol
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Large Scale Constraints

Michalowski et al, 2017 Metabolic Engineering

* Oxygen transfer rate (OTR) is limited (~¥150 — 180 mmol/Lh)

* Cooling capacities are limited

But: productivities (g/L
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Ideal Strain for Large-Scale Application

The ideal producer should:

enable high glucose uptake rates, even under resting condition

be blind with respect to extracellular heterogeneities

Goal:

to create a novel E. coli chassis with
fundamentally changed properties.

Drawback:

transcriptional responses under
large-scale conditions not known

Approach:

To perform systems biology studies on large-scale performance for deriving
guidelines for synthetic strain construction.
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Successful Bioprocess Development Needs to Pass Multiple Scales
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What is the impact of
repeated triggering on
cellular performance?

Simulated glucose distribution in 900 L
stirred tank reactor
Lapin et al., 2004



Scaling-up E. coli

- Impact of Glucose Gradients on Cellular Performance -
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Plant engineering/construction and validation

Simen, Loffler et al. 2016 Metabolic Engineering

=  Development of a STR-PFR system to simulate oscillating

gradients "
-
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= Volume PFR/ total volume: 25 %

= Online: temperature and oxygen

= thermally insulated :
Plug-flow like behavior
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STR-PFR Experiments With E. coli: Glucose Limitation

Simen, Loffler et al. 2016 Metabolic Engineering

| Batch: Il Chemostat (u =0.2 hl) Il Chemostat (u = 0.2 h'1) +PFR

" U= = Steady-state (feed) = PFR: glucose starvation zone
Viotal =Vsr=1.5 | " Vigta=Vsr=1.51 " Viotar= VsrrtVerg = 1.12 1+ 0.38 |
= Residence time PFR 125 s
U ] 7))
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2
Vere=1.51 l V= Vst Vorn= 11214 0.38 1=1.51 n
m Chemostat
+0h +1h +6h +28h sampling
Well mixed Inhomogeneously mixed
Long-term responses: 25min 120 min 28 h
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Glucose:

Short-Term Responses
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Intracellular Nucleotides
(Carbon Limitation-Starvation)

Simen, Loffler et al. 2016 Metabolic Engineering

-1

= Decreasing intracellular ATP-Concentration

- ATP/ umol g

< ADP
<~ AMP

= Increasing ADP-Level

= Fast Energy charge reduction (30 sec)
= Decreasing GTP-Level

= Sigmoidal ppGpp accumulation

Sequential response along the PFR
< 30 sec: Reduced Energy charge

< 70 sec: Decreasing GTP-Level
30-90 sec: Increasing ppGpp-Level

Transcriptional Response
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Short-term Response on Glucose Limitation:
Differentially Expressed (DE) Genes

Simen, Loffler et al. 2016 Metabolic Engineering

* Increasing limitation inside PFR ¥ PS5 vs STR )
* Filter for DE genes STR, Y
* 1% false discovery rate v v vV ¥V ¥V ¥
s P, P, P, P, Ps
* P5 down: 836 N
* P5 up: 955 = 3007 %
* Fold change >1.5 fold 4 20 3
* P5 down: 369 . 100 5
* P5 up 266 g E o a
= Pl P2 B3 P4 P5
= 4 o0l c
< 70s 2 70s S
- Immediate DE response after entering PFR £ 2001 3
 ,slow’dynamics<70s Lf 00, 5
* Transcriptional boost >70 s N Q
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Differentially Expressed Genes (PFR outlet vs STR)

Simen, Loffler et al. 2016 Metabolic Engineering

K (271)
S (190) 6 L (138)
R (184) 4 J (235)
2
F (99)
ol-
~
H (166) / 2 S
/ y \
]
Q (42) t > 1
U4
P (190) b \ ’
~ -
1(113)
E (340) U (26)
C (272) N (94)
G (349)

GAGE two-sample t-statistics
e===25min === 120min 28h
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Information storage and processing

K Transcription

L Replication, recombination and repair

J Translation, ribosomal structure and biogenesis

Cellular processes and signaling

Posttranslational modification, protein turnover and chaperones
Cell cycle control, cell divison and chromosome partitioning
Signal transduction mechanisms

Cell wall, membrane, envelope biogenesis

Defense mechnisms

Intracellular trafficking, secretion, vesicular transport

Cell motility

ZC<Z-HOO

Metabolism

G Carbohydrate tranport and metabolism

C Energy production and conversion

E Amino acid transport and metabolism

| Lipids transport and metabolism

P Inorganic ion transport and metabolism

Q Secondary metabolites biosynthesis, transport and metabolism
F Nucleotide transport and metabolism

H Coenzyme transport and metabolism

Poorly characterized
R General function prediction only
S Function unknown



Differentially Expressed Genes (PFR outlet vs STR): 25, 120 min, 28h

Simen, Loffler et al. 2016 Metabolic Engineering

K (245)
S (275) 6 L (153) **
R (275) 4 J (129) +*
*% F (72) O (109)
*% H (109) S JQ D (30)
Q (39) T (57)

P (144)

1 (78)

E (369) |
*: C (236)/ \{
* G (240)

GAGE two-sample t-test statistics
25min === 120min 28h

V (41)

U (26)
N (90) * %%

INFORMATION STORAGE AND PROCESSING
[K] Transcription

[L] Replication/recombination/repair

[J] Translation/ribosomal structure/biogenesis

CELLULAR PROCESSES AND SIGNALING

[O] Posttranslational modification/protein turnover/chaperones
[D] Cell cycle control/cell division/chromosome partitioning
[T] Signal transduction mechanisms

[M] Cell wall/membrane/envelope biogenesis

[V] Defense mechanisms

[U] Intracellular trafficking/secretion/vesicular transport

[N] Cell motility

METABOLISM

[G] Carbohydrate transport and metabolism

[C] Energy production and conversion

[E] Amino acid transport and metabolism

[1] Lipid transport and metabolism

[P] Inorganic ion transport and metabolism

[Q] Secondary metabolites biosynthesis/transport/catabolism
[F] Nucleotide transport and metabolism

[H] Coenzyme transport and metabolism
POORLY CHARACTERIZED

[R] General function prediction only

[S] Function unknown

General finding:
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- induction of carbon import, metabolism and energy generation
- repression of energy intensive processes




Glucose:

Long-Term Responses
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Long-Term Response on Glucose Gradients (triplicate results):

Reference — before connection with PFR

Simen, Loffler et al. 2016 Metabolic Engineering

Location: M STR (S) ® PFR (P1-P5)

R?=0.96 = distinct initial state S, in STR
0.501
0.25
N
[
R
2 0.00
Q
£
©
—0251 N\~ 30\
95%
ellipse
~0.50- , ; ; .
—0.4 00 0.4 08

dimension 1
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Long-Term Response on Glucose Gradients (triplicate results):

Phase | after connection with PFR
Simen, Loffler et al. 2016 Metabolic Engineering

Location: B STR (S) @ PFR (P5)

R?=0.96 = distinct initial state S, in STR
0.501
= strong transcriptional changes after
0.25] PFR connection
N . 45min
[ 25min gy
o .
z, 0.00] M 75min
g 10mi=\ 120min
5 |
5min min
-0.251 /\/‘30‘
95% [ ]
ellipse
—-0.50- ; ; , .
-0.4 0.0 04 0.8

dimension 1
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Long-Term Response on Glucose Gradients (triplicate results):

Phase Il after connection with PFR
Simen, Loffler et al. 2016 Metabolic Engineering

Location: M STR (S) ® PFR (P5)

R?=0.96 = distinct initial state S, in STR
0.50
= strong transcriptional changes after
0.25 PFR connection
e 25ming "
2 M 75min : H
2 000 w = transcriptional changes converge to a
£ 10min 120min
5 N | new steady-state
-0.251 - -- \oTs,
95% |
ellipse 33Omm\l‘..%h
24h'511
-0.50- ; ; , .
-0.4 0.0 0.4 0.8

dimension 1
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Long-Term Response on Glucose Gradients (triplicate results):
Repeated Transcriptional Shifts from STR to PFR

Simen, Loffler et al. 2016 Metabolic Engineering

Start of
dominating
strategic
response

dimension 2
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0.251

0.00;

-0.251
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Location: mM STR (S) ® PFR (P1-P5)

R? = 0.96
.25m|n
TPFR/ /P.45m|n
@ 75min
[
10min
45rM/

25m|n

.120m|n

5’VP5
210m|n

M 75min / ‘hh

10m|= 120m|n,. ° 1h
P,
/ P4
5m|n
[ ]
/\/ /PS
0

95%

ellipse 2

1h $1

‘%Omln

-0.4 0.0 0.4
dimension 1

0.8

distinct initial state S, in STR

strong transcriptional changes after
PFR connection

transcriptional changes converge to a
new steady-state

gradients in PFR cause trackable trans-
criptional changes leading to a stable
distribution of transcriptional patterns




What can we learn from modelling?



What can we learn from modelling?

Predicting the Transcriptional Dynamics



Agent-Based Modelling For Predicting Transcript Dynamics

Niess et al. .2017. Frontiers in Microbiology

Agent (single cell) Population (STR-PFR operating in continuous mode)
* polymerase movement: constant elongation rate * STR = ideally mixed; PFR = plugflow reactor

* constraint: minimum distance between ribosomes *  Population balances:
* attenuation modelling neglected for simplification e (1) PFR entering

* Simplification: start only valid under nitrogen limitation ¢ (2) drained off by efflux

* Transcription and translation are closely coupled * (3) cell division, no initiation of transcription

* Number of ribosomes per gene is variable and specific . F5te of 10.000 cells was tracked

for the gene

* mRNA degradation considered with constant

) ] o Number of likely events per time: Gillespie algorithm:
degradation elongation rate, initiated at start codon .
. Vprr 1 1
of transcription ar = NsTR—— T = In
VsTr ZO-’:
* No protein degradation, only dilution by growth VFeed
a2 = NsTR

VsTR Zar} <n Zaf} Za’;

@3 = Ngrp D j=1 j=l1 j=1 2016
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Simulation Parameters — No Regression

Niess et al. .2017. Frontiers in Microbiology

Parameter Value Unit

vggmp 21 Nucleotides per second
v;gaosome 21 Nucleotides per second
vggase 21 Nucleotides per second
AX 100 Nucleotides

Ay 100 Nucleotides

Az 100 Nucleotides

tined [30 125] Seconds

VerR 180 mL min™!

Vieed 5 mL min~!

VsT1R 1,120 mL

D 0.2 h

N2 10,000 cells
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Elongation rate

Ribosome movement on mRNA

RNAse degragation rate

Minimum distance between two RNAPs
Minimum distance between ribosomes
Closest distance of RNAse to ribosome

Induction period

Flow through PFR

Feed

STR volume

Dilution rate of the system

Total number of tracked cells



trpE trpD trpC

e
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trpB
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Prediction of population transcript levels in STR
Agent based modeling tracking the fate of 10.000 cells

Niess et al. .2017. Frontiers in Microbiology

Dynamic along PFR Distribution in STR
12 Experiment Simulation 4 | M experiment [ simulation
il irpL O trpL 3 4 _
N ipE Voo Mok 25 min -
10 4 csffffe= trpDCBA - trpDCBA
1 4
0 —
—_— 8 - ju—
[0) YV [}
4 p
k5 8
= . 3 *7] N
= 6 120 min = IH Iﬂ
&) o 2
(2] 2]
C C 14
Y - Y
' 4 — bt 0 -—
4 4
2 3 4
/ 28 h 5
I I I I I I 0 -i
0 20 40 60 80 100 120 troL  tpE  tpD  trpC  trpB  trpA
time | seconds Gene
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What can we learn from modelling?

Deriving Constraints for Creating Robust Strains
For Large-Scale Application

26 Takors, SysSyn Meeting, Munich*



Modeling Assumptions for Estimating Cellular Efforts Periodically Switching
Genes ON/OFF

Simen, Loffler et al. 2016 Metabolic Engineering

* Select transcripts with FDR < 1%
e Group in up- and downregulated genes
* De novo precursor synthesis:
* calculate individual ATP needs for G, A, T, C formation from metabolic
precursors
e calculate ATP needs for amino acid production assuming average protein
composition

* Transcription: For each mRNA with individual G, A, T, C content: 2 ATP/nucleotide
* Translation: 4 ATP/amino acid

* Considering mRNA dynamics and PFR residence time: 11 ribosomes per mRNA

e Completing translation after recycling in STR

27 Takors, SysSyn Meeting, Munich



Modeling Additional ATP Costs for Transcription and Translation
Individual ATP balances for each gene, reference: native maintenance Simen, Loffler ot al. 2016 Metabolic Engineering

ATP cost reference: E. coli maintenance (Taymaz-Nikerel et al. 2010)

P/O-Ratio 1.49

() ATP, ADP

NMP-CLTECETEE— mRNA . NADH, NAD*
@ nADPH, NADPY

C

== NTP—RELE IR mRNA = iclEEUL I Protein

Synthesis

- amino acids
CO o0 KO o0

NXP-Precursor €«—— Metabolism ——3) AA-Precursor

Maintenance demands are increased by 40 — 50 % in large-scale!
Represents missing energy for hyperproducers.




Exploiting the Results: Identifiers for Smart Genome Reduction

Top 20 Gene Targets for Deletion/Modulation Saving ATP

Simen, Loffler et al. 2016 Metabolic Engineering

Gene' Percentage increasing the growth-independent maintenance, % COG Function
De novo mRNA synthesis Translation >

flic 2.70 0.40 3.10 N flagellar biosynthesis; flagellin, filament structural protein
aroF 0.67 0.10 0.77 E 2-dehydro-3-deoxyphosphoheptonate aldolase (DAHP synthase)
aldA 0.48 0.07 0.55 C aldehyde dehydrogenase A, NAD-linked
CStA 0.35 0.05 0.40 T peptide transporter induced by carbon starvation
aceA 0.34 0.05 0.39 C isocitrate lyase monomer
cspD 0.31 0.05 0.36 K DNA replication inhibitor
aceB 0.27 0.04 0.31 C malate synthase A
trg 0.27 0.04 0.31 N methyl accepting chemotaxis protein — ribose/galactose/glucose sensing
groL 0.26 0.04 0.30 O  GroEL chaperonin, peptide-dependent ATPase, heat shock protein
dnaK 0.24 0.03 0.27 O  chaperone protein DnaK
yfiA 0.18 0.03 0.21 J stationary phase translation inhibitor and ribosome stability factor
gatC 0.17 0.03 0.20 G  galactitol PTS permease - GatC subunit
flgL 0.16 0.02 0.19 N flagellar biosynthesis; hook-filament junction protein
flgK 0.13 0.02 0.15 N flagellar biosynthesis, hook-filament junction protein 1
acs 0.13 0.02 0.14 | acetyl-CoA synthetase (AMP-forming)

mdh 0.12 0.02 0.14 C  malate dehydrogenase

kgtP 0.11 0.02 0.12 E  o-ketoglutarate: H* symporter
fliA 0.11 0.02 0.12 K RNA polymerase, sigma 28 (sigma F) factor
ginH 0.10 0.02 0.12 E  glutamine ABC transporter - periplasmic binding protein
yjdA 0.10 0.01 0.11 n.a. clamp-binding sister replication fork colocalization protein

*Only genes which expression was always significantly changed between STR and PFR P5 (FDR < 0.01) were selected for the calculations (core genes).

29 Takors, SysSyn Meeting, Munich

Ongoing research



Transferring Results:

E. coli HGT
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Ideal Strain for Large-Scale Application

Michalowski et al, 2017 Metabolic Engineering

The ideal producer should:

be blind with respect of extracellular heterogeneities

enable high glucose uptake rates, even under resting condition

Goal: qs

to create a novel E. coli chassis

with fundamentally changed

E. coli New

properties.

E. coli WT

but m, stays

q is increased
qS, benefit
constant 1\
ms
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Engineering E. coli HGT Following Two Guidelines

HGT = high glucose throughput
Michalowski et al, 2017 Metabolic Engineering

Modulating stringent response to make E. coli blind Modulating central metabolism

RelA Synthase activity

En hancement"b.fm
(p)ppGpp levels

Enhancement of
SpoT Hydrolase activi ' (P)pPPGpp levels. Synthase activity

WO patent filed:

Bacterial strain and method for high
throughput of sugar in the microbial
conversion into biosynthetic products

RelA Hydrolase activity



E. coli HGT

Michalowski et al, 2017 Metabolic Engineering

Stringent Response

-----------------------------------

ATP +
C-source, GTP/GDP
Phosphate,
Fatty acid starvation

spoT[R290E;K292D] §
SpoT
Hyd | Syn
v
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Experimental Setup

Michalowski et al, 2017 Metabolic Engineering

Installing ammonia limitation under glucose saturated conditions to test
engineered strains

—_—

ODSOOnm
O ONRAROO®O

Pyr, Lac, Ace

O -

0,6

rrrrrrrrrrrrrrrrrrrrtl
0 2 4 6 8 10 12 14 16 18 20
process time [h]

—e— OD —m—Lac —A—Pyr —€—Ace —0O—Gilc
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E. coli HGT

Includes aceE* + changes in relA and spoT
Michalowski et al, 2017 Metabolic Engineering

_‘4-. nutrient surplus N-limitation
E. coli HGT shows no ppGpp changes under 53
> -
ammonia limited conditions, i.e. no stringent g5
o ey a |
response initiated 2, ]
Q|
Q.O_

) L} l L} ] ) I L) ' L) I L)

| |
3 -2 1 0 1 2 3 4

time from N-limitation [h]
[-O—WT —A—ACE ——SR —O—HGT|

E. coli HGT provides a surplus of pyruvate for Lk A T T S
downstream use. 0 -
100 — 100—- éOZ
g 80 — g g0 —| W-cOW
E E T
&, 60 — & 60
40 40 -
= ~\om
0—- 0—-
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E. coli HGT — glucose uptake kinetics

Michalowski et al, 2017 Metabolic Engineering

E. coli HGT shows about 10 fold higher glucose uptake for non-growing conditions
than needed for maintenance demands and reaches maximum uptake with 0.3 1/h.
The surplus of carbon is available as pyruvate predominately.

L
surplus of
glucose uptake
of E. coli HGT \

O WT
glucose uptake A ACE
of E. coli HGT . SR

~— | O HGT
L) l 1
glucose uptake . 0,6 0,7
under nitrogen maintenance
limitation demand mg M [1/h]
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Summary & Thanks

=  Mixing times of max 70 s should be installed
preventing massive transcriptional responses

=  Massive transcriptional dynamics are induced by
substrate heterogeneity causing maintenance
increase (1.4-1.5 fold).

= Maintenance dynamics and transcriptional
adaptation can be well modelled/predicted.

= lLarge-scale performance can be simulated.

= Novel chassis E. coli HGT created.

Thanks Joana Simen, Michael Loffler,
to: Annette Michalowski, Alexander Niess

Thanks for Cooperation:
* IMG (AG Riess, Tiibingen) for transcript measurements
* IMB (AG Sprenger) for reporter strain construction
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Different Time Scales of Response

Niess et al. .2017. Frontiers in Microbiology

2.5
- 2.0
g J I . <
3, 6000 — =T - 1.5 ;'st
L 4000 S i - 1.0 157
_ — .
2000 ’f Protein L 0.5
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time | min
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