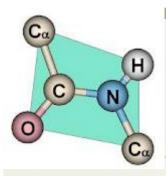
# Plant Derived Cyclopolypeptides: Targets for Drug Discovery




Dr. Rajiv Dahiya
M.Pharm. Ph.D. D.Sc. FAPP. FICCE

Principal, Globus College of Pharmacy, Bhopal (MP)President, Association of Pharmacy Professionals (APP)Editor-in-Chief, Bulletin of Pharmaceutical Research (BPR)



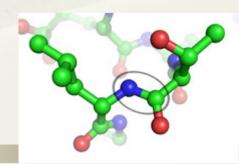


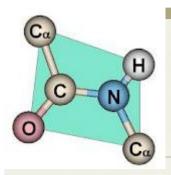




## Peptide Bond...

#### Simplicity to complexity....


- \* A peptide bond (amide bond) is a covalent chemical bond formed between two molecules when the carboxyl group of one molecule reacts with the amino group of the other molecule, causing the release of a molecule of H<sub>2</sub>O, and usually occurs between amino acids.
- \* Simplest amino acid: 'Glycine'
- \* Modified amino acids:


Isoserine, Dehydrohomoalanine (Dhha),

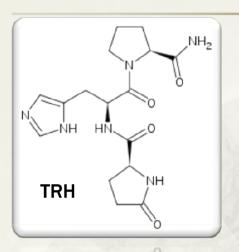
β-Hydroxy-p-bromophenylalanine,

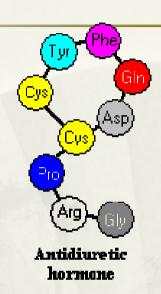
Chloroisoleucine,

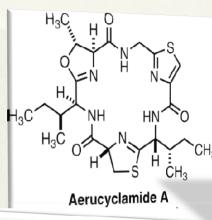
3-Hydroxy-3-methylproline

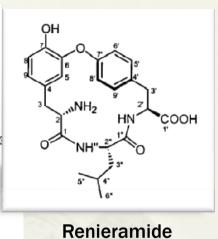


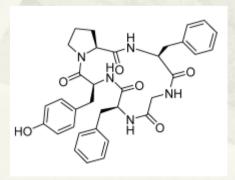



## Peptide Bond...

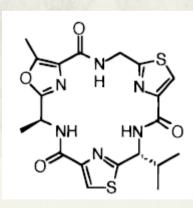

Simplicity to complexity....


#### \* Other moieties:

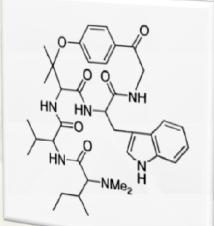

- a) Acids:- 4-amino-3,5-dihydroxyhexanoic acid (Adha), (2S,3R,5R)-3-amino-2,5-dihydroxy-8-phenyloctanoic acid (Ahoa), 3-amino-4-hydroxy-6-methyl-8-phenylocta-5,7-dienoic caid (AHMP).
- b) Heterocyclics:- thiazole (Tzl), oxazole (Ozl), methyloxazoline (mOzn), thiazoline (Tzn), 3-amino-6-hydroxy-2-piperidone (Ahp)
- c) With fatty acid acyl chains or even more complex 'with galactose bridges' and 'histidino-tyrosine moiety'.
- \* Proteins (actin, myocin, myoglobulin) are polypeptides in folded form which function as enzymes (Human glyoxalase I), hormones (TRH, vasopressin, insulin, gastrin).
- \* The peptide bonds in proteins are metastable (*i.e.* in water, they break spontaneously, in living organisms, the process is facilitated by enzymes (protease/peptidase)


# Peptidic structures...

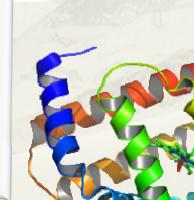










Longicalycinin A



Nostocyclamide



Hymenocardine



## Preference of cyclic over linear peptides...

Although linear peptides are associated with pharmacological activities but cyclic peptides dominate over them due to the facts that:

- 1) Inherent flexibility of linear peptides lead to different conformations which can bind to more than one receptor molecules, resulting in undesirable adverse effects.
- 2) Cyclization of peptides reduces the degree of freedom for each constituent within the ring and thus substantially leads to reduced flexibility, increased potency and selectivity of cyclic peptides.

#### **Isolation sources...**

- 1) Marine sponges Jaspis sp., Hymenacidon sp., Microscleroderma sp., Discodermia sp., Theonella sp.
- 2) Marine mollusks Elysia rufescens
- 3) Fungi Petriella sordida, SANK 17397
- 4) Bacteria Rhodococcus sp., Halobacillus litoralis
- 5) Cyanobacteria Tolypothrix byssoidea, Hassallia sp.
- 6) Hyphomycetes Clavariopsis aquatica
- 7) Plants Pseudostellaria heterophylla

## **Bioactivity of Peptides...**

#### Pharmacological aspects....

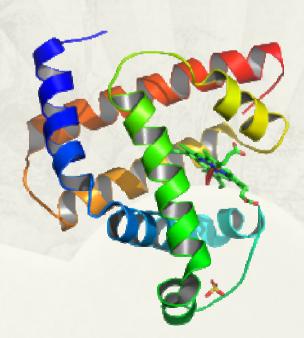
- \* Cytotoxic activity against various cell lines.
  - e.g. Cycloxazoline, Stylostatin 1, Discokiolides, Discodermins, Phakellistatins, Aciculitins, Axinellins, Tasiamide etc.
- \* Antifungal activity against Candida and Cryptococcus sp. e.g. Jasplakinolide, Hymenamides, Aciculitins, Tolybyssidins, Halolitoralins, Arborcandins, Rhodopeptins etc.
- \* Antimalarial activity e.g. Carmabin A, Dragomabin, Dragonamide A
- \* Anti-HIV activity e.g. Circulins, Cycloviolins, Palicourein
- \* Immunosuppressive activity e.g. Cyclolinopeptides, Schnabepeptide

## **Bioactivity of Cyclopeptides...**

#### Pharmacological aspects....

- \* Cyclooxygenase inhibitory activity
  - e.g. Dichotomins D, F-G, Cycloleonuripeptide D
- \* Tyrosinase inhibitory activity
  - e.g. Pseudostellarins
- \* Antibacterial activity
  - e.g. Verrucamides A-D, Abyssenine C, Mucronine F-H, Discarine A, B, Scutianine B, Condaline A, Amphibine H, Nummularine B, R, Rugosanine A
- \* Antimycobacterial activity
  - e.g. Ziziphine N, Q,
- \* Anti-ACE and Anti-renin activity
  - e.g. Lyciumin A, B

#### Mechanism of action...


#### Pharmacological aspects....

- \* Cyclopeptides act as *cytotoxics* by inducing apoptosis especially by binding to highly tyrosine-phosphorylated IFG-1 receptors. Antagonism of transport proteins such as Pgp and MRP-1 may be the other vital mechanism of action of cytotoxic cyclopeptides.
- \* Cyclopeptides act as *antifungals* by a novel mechanism comprising *inhibition of cell wall biosynthesis*. These peptidic congeners non-competitively inhibit the enzyme  $\beta$ -(1,3)-D-glucan synthase which forms stabilizing glucan polymers in fungal cell wall. Another sensitive target enzyme is ionositol phosphorylceramide synthase (IPC synthase) which is essential for fungal sphingolipid biosynthesis.

# **Cyclopeptides in clinical trials...**

\* Kahalalide F: Phase III clinical trial

\* COR-1: Phase 1 clinical trial



# Synthesis of Cyclopolypeptides

- \* Solid Phase Peptide Synthesis
- \* Solution Phase Peptide Synthesis

#### Cyclopeptides Synthesized by Our Research Group

- 1. Cyclotetrapeptide [Dahiya and Gautam, Chin. J. Chem. 2011, 29(9), 1911-6.] [Wiley, IF: 0.755]
- 2. Cyclomontanin D [Dahiya and Gautam, Afr. J. Pharm. Pharmacol. 2011, 5(3), 447-53.] [IF: 0.839]
- 3. Cordyhetapeptide B [Dahiya and Gautam, Bull. Pharm. Res. 2011, 1(1), 1-10.] [UIF: 0.735]
- 4. Cyclotetrapeptide [Dahiya and Gautam, Mar. Drugs 2011, 9(1), 71-81.] [MDPI, IF: 3.854]
- 5. Gypsin D [Dahiya and Gautam, Am. J. Sci. Res. 2010, 11, 150-8.]

# Cyclopolypeptides Synthesized by Our Research Group

- **6. Cycloheptapeptide** [Dahiya and Gautam, *Mar. Drugs 2010,* 8(8), 2384-94.] [MDPI, IF: 3.854]
- 7. Annomuricatin B [Dahiya et al., *Z. Naturforsch.* 2009, 64b(2), 237-44.] [IF: 0.864]
- 8. Cyclopolypeptide [Dahiya et al., Chem. Pharm. Bull. 2009, 57(2), 214-7.] [IF: 1.592]
- 9. Hirsutide [Dahiya et al., *Monatsh. Chem. 2009,* 140(1), 121-7.] [Springer, IF: 1.532]
- **10.** Cyclopolypeptide [Dahiya, *J. Iran. Chem.* Soc. 2008, 5(3), 445-52.] [Springer, IF: 1.689]
- **11. Cyclohexapeptide** [Dahiya, *Chem. Pap. 2008,* 62(5), 527-35.] [Springer, IF: 1.096]
- 12. Psammosilenin A [Dahiya, Arch. Pharm. Chem. Life Sci. 2008, 341(8), 502-9.] [Wiley, IF: 1.708]
- 13. Cyclohexapeptide [Dahiya and Kumar, *J. Zhejiang Univ. Sci. B. 2008*, 9(5), 391-400.] [Springer, IF: 1.099]

### Synthesis of a Cyclohexapeptide

Fig. 1. Synthesis of dipeptide unit VIII. Reaction conditions: a) diphenylmethanol, AcOH, H<sub>2</sub>SO<sub>4</sub>, room temperature, 12 h; b)
DCC, TEA, DCM, room temperature, 24 h.

### Synthesis of tetrapeptide unit

Fig. 2. Synthesis of tetrapeptide unit XI. Reaction conditions: a) DCC, TEA, DCM, room temperature, 24 h; b) LiOH, THF/H<sub>2</sub>O ( $\varphi_r = 1:1$ ), room temperature, 1 h; c) TFA, CHCl<sub>3</sub>, room temperature, 1 h.

# Synthesis of linear hexapeptide unit

## Cyclization of linear hexapeptide unit

Fig. 3. Synthetic pathway for cyclic hexapeptide – dianthin A (XIII). Reaction conditions: a) LiOH, THF/H<sub>2</sub>O ( $\varphi_r = 1:1$ ), room temperature, 1 h; b) TFA, CHCl<sub>3</sub>, room temperature, 1 h; c) DCC, TEA, DCM, room temperature, 24 h; d) DCC, pnp, room temperature, 12 h; e) TEA or NMM or pyridine, CHCl<sub>3</sub>, 0 °C, 7 days.

# Controlled Delivery of Peptides/Proteins

- \* Although many peptide/protein like products are generally designed for parenteral administration, some other noninvasive routes have also been used. *e.g.* desmopressin is delivered nasally and deoxyribonuclease by inhalation. Although peptides and proteins are generally orally inactive, cyclosporine is an exception.
- \* In order to design and develop long-acting, more effective peptide/protein drugs, the controlled release mechanisms and effective parameters need to be understood.
- \* Various peptide/protein delivery systems includes biodegradable and nondegradable microspheres, microcapsules, nanocapsules, injectable implants, diffusion-controlled hydrogels and other hydrophilic systems, microemulsions and multiple emulsions, and the use of iontophoresis or electroporation etc.

#### Materials Used to Prepare Microspheres for Controlled Delivery of Peptide and Proteins

| Material                                                           | Degradation mechanism                                   | Biodegradation          | Active substance                                                           |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------|-------------------------|----------------------------------------------------------------------------|--|--|--|
| Natural                                                            |                                                         |                         |                                                                            |  |  |  |
| Starch                                                             | Amylase                                                 | Biodegradable           | Insulin                                                                    |  |  |  |
| Alginate                                                           | pH, enzymes                                             | Biodegradable           | Protein                                                                    |  |  |  |
| Chitin                                                             | pH, enzymes                                             | Biodegradable           | Bovine serum albumin                                                       |  |  |  |
| Chitosan                                                           | pH, enzymes                                             | Biodegradable           | Antigens, Bovine serum albumin, salmon calcitonin                          |  |  |  |
| Collagen/gelatin                                                   | Collegenase                                             | Biodegradable           | Hydroxyapatite                                                             |  |  |  |
| Corn protein(zein)                                                 | Enzymes                                                 | Biodegradable           | Ivermectin                                                                 |  |  |  |
| Cross linked albumin                                               | Enzymes                                                 | Biodegradable           | Virus antigen                                                              |  |  |  |
| Hydroxyapatite                                                     | Dissolves by the time Biodegradable                     |                         | Bone morphogenic protein,<br>Recombinant human glucocerebrosidase          |  |  |  |
| Hyaluronik asit                                                    |                                                         | dable                   | Bovine serum albumin                                                       |  |  |  |
|                                                                    |                                                         | -                       |                                                                            |  |  |  |
| Azo-cross-linked copolymer of<br>styrene and HEMA coated particles | Reduction of azo bonds by microflora in large intestine | Partially<br>degradable | Insulin and vasopresin                                                     |  |  |  |
| Maleic anhydride/poly<br>(N- isopropylacrylamide) hybrid hydrogels | Enzymes                                                 | Partially<br>degradable | Dextran                                                                    |  |  |  |
| Hydrogels                                                          | Hydrolysis                                              | Biodegradable           | Peptides, proteins                                                         |  |  |  |
| Poly sebacic anhydrides                                            | Hydrloysis                                              | Biodegradable           | Rhodamin B                                                                 |  |  |  |
| Polyesters/poly lactides                                           | Ester hydrolysis by esterases                           | Biodegradable           | Somatostatin anoloques                                                     |  |  |  |
| Polyorthoesters                                                    | Hydrolysis                                              | Biodegradable           | Bovine serum albumin                                                       |  |  |  |
| Polycarbonates                                                     | Hydrolysis                                              | Biodegradable           | Dopamine                                                                   |  |  |  |
| Poly lactic acid / glycolic<br>acid (PLGA)                         | Hydrolysis                                              | Biodegradable           | Leuprolide acetate, goserelin acetate,<br>triptorelin, integrilin, insulin |  |  |  |
| Polycaprolactones                                                  | Hydrolysis                                              | Biodegradable           | Bovine serum albumin, insulin,<br>nerve growth factor                      |  |  |  |
| Poly etilen oksit/amino acids                                      | Enzymes                                                 | Biodegradable           | Poly(L-aspartic acid), Plasmid ,<br>DNA, Cyclophosphamide                  |  |  |  |
| Polyphosphazenes                                                   | Hydrolysis, dissolution                                 | Biodegradable           | Naproxen, Bovine serum albumin                                             |  |  |  |

# Methods Used for Preparation of Polymeric Nanocapsules

| Polymer | Drug                         | Size (nm) | Preparation method   |
|---------|------------------------------|-----------|----------------------|
| PLGA    | Insulin                      | >1 μm     | Phase inversion      |
| PLGA    | Hemagglutinin                | 250       | Multiple emulsion    |
| PLA     | Tetanus toxoid               | 200       | Multiple emulsion    |
| PLA     | PDGFR β tyrphostin inhibitor | 125       | Solvent displacement |

# Marketed Formulations of Proteins Based on Biodegradable Microspheres

| Drug                             | Trade name             | Company            | Route                                    | Application                              |
|----------------------------------|------------------------|--------------------|------------------------------------------|------------------------------------------|
| Leuprolide acetate               | Lupron Depot®          | Takeda-Abott       | 3 months depot suspention                | Prostate cancer                          |
| Recombinant human growth hormone | Nutropine Depot®       | Genentech-Alkermes | Monthly S/C injection                    | Growth hormone deficiency                |
| Goserelin acetate                | Zoladex <sup>®</sup>   | I.C.I.             | S/C İmplant                              | Prostate cancer                          |
| Octreotide acetate               | Sandostatin LAR® depot | Novartis           | Injectable S/C suspension                | GH suppression, anticancer               |
| Triptorelin                      | Decapeptyl®            | Debiopharm         | Injectable depot                         | LHRH agonist                             |
| Recombinant bovine somatropin    | Posilac®               | Monsanto           | Injectable depot,<br>oil based injection | To increase milk<br>production in cattle |

# Advantages of Controlled Delivery of Peptide and Protein Drugs

- Controlled drug delivery is delivery of drug at a rate or to a location determined by needs of the body or disease state over a specified or extended period of time during the therapy
- \* Conventional drug therapy requires periodic doses of therapeutic agents and some solubility problems can be seen in conventional formulations
- \* Controlled delivery and the formulation can provide maximum stability, activity and bioavailability
- \* Controlled delivery of peptide and protein drugs provides improved efficiency, reduced toxicity and improved patient convenience

#### Examples and Application of Peptides and Proteins in Clinical Use or Undergoing Clinical Trial

| Therapeutic peptide or protein | Application                        |  |  |
|--------------------------------|------------------------------------|--|--|
| Tissue necrosis factor         | Carcinoma                          |  |  |
| Proleukin                      | Carcinoma                          |  |  |
| y-Interferon                   | Carcinoma                          |  |  |
| Epidermal growth factor        | Wound healing                      |  |  |
| Transforming growth factors    | Wound healing                      |  |  |
| Fibroblast growth factor       | Wound healing                      |  |  |
| Insulin-like growth factors    | Wound healing                      |  |  |
| Hirudin                        | Fibrinolytic                       |  |  |
| Tissue plasminogen activator   | Fibrinolytic                       |  |  |
| Streptokinase                  | Fibrinolytic                       |  |  |
| Erythropoietin                 | Erythropoieais stimulation         |  |  |
| Factor VIII                    | Haemophilia                        |  |  |
| Factor IX                      | Christmas disease                  |  |  |
| Triproamylin                   | Glucose regulation                 |  |  |
| Insulin                        | Glucose regulation                 |  |  |
| Somatostatm                    | Glucose regulation                 |  |  |
| Proinsulin                     | Glucose regulation                 |  |  |
| α-Interferon                   | Viral diseases/hairy cell leukemia |  |  |
| β-Interferon                   | Multiple sclerosis                 |  |  |
| Glucocerebrosidase             | Gaucher' disease                   |  |  |
| Cerezyme                       | Type I Gaucher's disease           |  |  |
| Pulmozyme                      | Cystic fibrosis                    |  |  |
| Calcitoninh                    | Bone disease                       |  |  |
| Oxytocin                       | Labour induction                   |  |  |
| Growth hormone                 | Short stature                      |  |  |
| α1 Antitrypsin (aat)           | aat deficiency                     |  |  |
| Superoxide dismutase           | Respiratory disorders              |  |  |

### **BIBLIOGRAPHY**

- [1] A. Wele, Y. Zhang, L. Dubost, J-L Pousset, B. Bodo, Nigerian J. Nat. Prod. Med. 9 (2005) 68.
- [2] E. Svangard, U. Goransson, Z. Hocaoglu, J. Gullbo, R. Larsson, P. Claeson, L. Bohlin, J. Nat. Prod. 67 (2004) 144.
- [3] A.F. Morel, C.A. Araujo, U.F. da Silva, S.C. Hoelzel, R. Zachia, N.R. Bastos, Phytochemistry. 61 (2002) 561.
- [4] H. Morita, A. Shishido, T. Matsumoto, H. Itokawa, K. Takeya, Tetrahedron. 55 (1999) 967.
- [5] W. Mongkolvisut, S. Sutthivaiyakit, H. Leutbecher, S. Mika, J. Nat. Prod. 69 (2006) 1435.
- [6] C. Baraguey, A. Blond, I. Correia, J-L. Pousset, B. Bodo, C. Auvin-Guette, Tetrahedron Lett. 41 (2000) 325.
- [7] S. Kosasi, W.G. van der Sluis, R. Boelens, L.A. Hart, R.P. Labadie, FEBS Lett. 256 (1989) 91.
- [8] H. Morita, T. lizuka, C.Y. Choo K.L. Chan, J. Nat. Prod. 68 (2005) 1686.
- [9] S. Yahara, C. Shigeyama, T. Nohara, H. Okuda, K. Wakamatsu, T. Yasuhara, Tetrahedron Lett. 30 (1989) 6041.
- [10] I. Tuncer Degim, N. Celebi. Curr. Pharm. Design. 13 (2007) 99.

# THANKS!!!

Dr. Rajiv Dahiya

M.Pharm, Ph.D, D.Sc, FAPP, FICCE

