Engineered T cells: Next-generation cancer immunotherapy

Rahul Purwar, Assistant Professor Department of Biosciences & Bioengineering Indian Institute of Technology Bombay (IIT Bombay) Mumbai, India, 400076

Introduction

- Adoptive T cell therapy: Engineered CAR-T cells
- Review of recent clinical trials
- Challenges of CAR T cell therapy

Results

- T cell subsets: Th17 and Th9 cells in cancer immunotherapy

Summary

Adoptive T cell therapy: what we learnt and what we should do next

Overview: Adoptive T cell therapy

- Target therapy with Tumor specific T cells
 - Cancer: Melanoma
 - Autologous tumor infiltrating lymphocytes (TILs); "Live drug"
 - Advantages
 - High response rate (>50%),
 - Long-term remission,
 - Less toxic & gentler to the patient
 - Limitation:
 - Extraction of TILs,
 - Cell manufacturing
 - Possible alternate
 - T cell Engineering (CAR-T cells)

Rosenberg SA & Dudley ME 2009 Current Opinion of Immunology

- CAR: Single fusion molecule with antigen specificity plus signaling domain
- Three types of CAR: First/second/generations
 - Based on co-stimulatory receptors

"Live drug"

Cancer: Solid tumor & hematological malignancies

Tumor recognition

independent of HLA

(no HLA typing

needed)

be engineered

Target	CAR	Cancer	Objective response
CD19	CAR:CD28-CD3ζ	Lymphoma and CLL	N=7: 1CR, 5 PR & 1SD
	CAR:CD137-CD3ζ	ALL	2CR
	CAR:CD28-CD3ζ	ALL	5CR
CD20	CAR:CD137-CD28- CD3ζ	NHL	N=3: 1PR, 2NED
CEA	CAR-CD3ζ (1 st gen)	Colorectal & breast	N=7: minor responses in two patients
GD2	CAR-CD3ζ (1 st gen)	Neuroblastoma	N=19: 3CR
ERBB2	CAR:CD28-CD137- CD3ζ	Colorectal cancer	N=1, patient died

Kershaw et. al. 2013 Nature Reviews cancer

Toxicities

On target/off tumor toxicities

- Metastatic colon cancer patient died after 5 days of infusion of ERBB2+CAR-T cells
 - Low levels of ERBB2 express on lung epithelium (lung tox)
- Renal cell carcinoma: 5/11 patients developed liver toxicity

— Cytokine syndrome

- Elevated levels of pro-inflammatory cytokines
 - Treatable by anti-IL-6mAb and steroids

Tumor target

- Target antigen is critical determinant for efficacy & safety
- Ideal target uniquely express on tumor cells or on cells which are not essential for survival

Efficacy & Long-term persistence

- Subtypes of CD4+T cells (Th1, Th2, Th17, Th9 cells),
- CD8+T cells
 - naïve, central memory; long-term
 - effector; active but short lived

Trafficking of CAR T cells to tumor

- Expression of addressins
- Route of CAR-T cell infusion
 - Intra-tumoral/intravenous
- Optimal co-stimulation of T cells

- Patient conditioning before ACT
 - Reduced-intensity or nonmyeloablative
 - Increased intensity myelo ablative

Introduction

- Adoptive T cell therapy: focus on engineered CAR-T cells
- Overview of current & investigational CAR therapies
- Challenges of CAR T cell therapy

Results

Roles of T-helper cell subsets in cancer immunotherapy

N

Summary

Adoptive T cell therapy: what we learnt and what we should do next

Adoptive T cell therapy: Right T cell population?

Pro-tumor:

- enhances vascularization/angiogenesis
- promotes metastasis
- promotes growth

Langowski et al, Nature 2006; Murugayen 2011 J.Immunol; Wang et al. J.Exp.Med 2009

Anti-tumor:

- enhances tumor immunity by promoting CD8+T cell and DC function

Martin-Orcazzo et al Immunity 2010

Tumor growth suppression in ROR[©]-/- mice (Th17 cell deficient)

Abrogation of Th17 pathways promotes anti-tumor immune responses

Treatment with exogenous rIL-9 suppresses tumor growth

limited to melanoma tumor model

Days after tumor induction

Effects of rIL-9 on melanoma tumor growth in Rag1-/- mice (T cell and B cell deficient host)

IL-9 mediated tumor growth suppression is independent of T cells and B cells

IL-9 mediated tumor growth suppression is dependent of mast cells

Engineering Th9 cells: TAA specific Tumor model

<u>Generation of Ovalbumin expressing B16 tumor cells</u> (Lentiviral method)

Treatment with Th9 cells suppresses tumor growth

Immunocompetent host (Wild type)

Th9 cell therapy: efficacy studies in immunodeficient host

Th9 cells suppresses tumor growth independent of T cell and B cell presence

Mechanism of anti-tumor effects of Th9 cells

Effects of Th9 cells on CD8+T cells (OT-1 cells) proliferation

CFSE

CFSE: Carboxyfluorescein succinimidyl ester

Mechanism of anti-tumor effects of Th9 cells

Examining Cytotoxic activity of Th9 cells

What is the relevance of these findings in human?

Th9 cells are present in human "skin" and "blood"

Th9 cells are not just a murine phenomenon

Summary

CAR-T cells

- T cells transduced with tumor-specific
 Chimeric Antigen Receptor (CAR)
- Tumor recognition independent of HLA (no HLA typing needed)
- Target: variety of tumor antigens (protein, carbohydrate, glycolipid)
- High response rate (up to 88%): pre-clinical and clinical findings

Limitation of CAR-T cells

- Toxicities
 - On target/off tumor toxicities
 - Cytokine syndrome
- Tumor microenvironment
 - Presence of MDSCs & Treg in tumor
 - Immunosuppressive agents

Results & Conclusion

- IL-9 is a novel anti-tumor cytokine and anti-tumor effects are mediated via mast cells
- Th9 cells are the most superior anti-tumor Th cells
- Th9 cells exists in human: not just murine phenomenon
- Strategies that promotes IL-9 production will be a critical for the development of robust treatment for melanoma and lung carcinoma.

Acknowledgement

Laboratory members at IIT Bombay

Richa Agarwal Mukti Vats Farha Memon Sathya Atish

Department of Dermatology, Brigham & Women's Hospital (BWH)

Thomas S Kupper

Department of Neurology, BWH

Vijay K Kuchroo Wassim Elymann Sheng Xiao

National Institute of Health (NIH/NIEHS)

Anton J Jetten Hong Soon Kang

!!Thanks a lot!!