The role of oxygen insufficiency in the onset and development of the vascular complications of diabetes

Rachel M Knott

School of Pharmacy & Life Sciences

Robert Gordon University, Aberdeen AB10 7GJ, UK

Where?

Oxygen and cell survival

Capillaries bring oxygen and nutrients to cells

Glucose concentration

Glucoseconcentrationregulated byinsulin

Unregulated glucose level

- Diabetes mellitus (DM)
 - Type 1 DM insulin insufficiency
 - Type 2 DM insulin resistance
- Clinical management of glucose levels is a priority

• High and/or fluctuating high levels of glucose increase the vascular complications resulting from the disease.

Glucose mediated endothelial cell damage

- Oxidative stress
- **♦** cell proliferation
- Impaired O2 delivery
- Anaerobic glucose metabolism

Anaerobic vs aerobic metabolism

Oxygen insufficiency

oxygen demand oxygen supply oxygen demand oxygen supply**Ψ** Adaptive response

Adaptive response to low oxygen

Consequence of normoglycaemia and low oxygen?	Rationale for the adaptive response	Consequence in hyperglycaemia and low oxygen?
> anaerobic metabolism therefore reduced ATP production	to increased glucose uptake to redress balance and increase ATP production	glucose levels may be already very high and increase oxidative stress
> glucose metabolism	to increased glucose metabolism to redress balance and increase ATP production	
> endothelial cell proliferation	to increase vascular areas and thus enhance oxygen delivery	hyperglycaemia modifies some of the structures within cells that are able to respond to mediate cell proliferation reducing ability of cells to proliferate
> erythropoietin production	to increase oxygen delivery to the cells/tissue	

Capillary network

Endothelial cells

3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue). (Wong/Searson Lab)

Capillary damage/dysfunction

Oxygen insufficiency

 Hypoxia inducible factor type 1 (HIF1)

Dimeric transcription factor

• HIF1 α – stabilised in oxygen insufficiency

HIF1β – constitutively expressed

 Binds to hypoxia response element (HRE)

Hypoxia response element

Hypoxia inducible factor type 1

Angiogenesis

EG-VEGF ENG LEP LRP1 TGF-β3 VEGF VEGFR ADM ET1 α₁₈-AR HO1 NOS2

Growth & Survival

Cyclin G2 IGF-BP1,2,3 WAF-1 TGF-a TGF-B3 ADM **EPO** NOS2 IGF2 NOS2 NIP3 NIX RTP801 ET1 VEGF VEGFR Transferrin Transferrin-R MDR

Glucose metabolism

HK1 HK2 AMF/GPI ENO1 GLUT1 **GLUT3 GAPDH** LDHA PFKBF3 **PFKL** PGK1 PKM TPI ALDA ALDC LEP

Invasion & Metastasis

KRT14

TGF-a

KRT18
KRT19
VIM
MIC2
CATHD
Collagen type V (α1)
FN1
MMP2
PAI1
Prolyl-4-hydroxylase α(1)
UPAR
AMF
c-MET
LRP1

Miscellaneous

DEC1, 2
ETS-1
NUR77
CA 9
p35srj
ITF
AK3
Ecto-5'- nucleotidase
Ceruloplasmin
Transglutminase 2

Glucose mediated change to HIF1 function

Activation of transcriptional activity

HIF- 1α dysfunction in diabetes Cell Cycle 9:1, 75-79; January 1, 2010; Hariharan Thangarajah, Ivan N. Vial, et al.

Human microvascular dermal endothelial cell model

Measurement & analysis

Image taken each day and stored for subsequent analysis

Effect of [glucose] and [oxygen]

Summary

Hypoxia increased net migration distance at 24 & 48 h.

High glucose concentration decreased net migration of endothelial cells at 24 & 48 hours.

Human microvascular dermal endothelial cell (HMVDEC) model

Normoxia (18% oxygen)

Hypoxia (5% oxygen)

5mM glucose

20mM glucose

Measurement & analysis

Image taken each day and stored for subsequent analysis

Effect of mannitol

□N5mM

Summary

Hypoxia increased net migration distance at 24 & 48 h.

Increased

mannitol concentration did not show any significant change in the net migration of endothelial cells at 24 & 48

Effect of wounding cells

Summary

Hypoxia increased migration and an increased glucose concentration decreased the net migration. Cells from the wounded edge travelling at a significantly greater distance than cells from intact edge.

Immunostaining: HIF1α

Negative control b

normoxia

hypoxia

Hector, MacMannus & Knott (2004)

HUVEC

Immunostaining: HIF1α

5 mM glucose hypoxia

20 mM glucose hypoxia

RGU ROBERT GORDON UNIVERSITY ABERDEEN

Reactive oxygen species

- Silymarin
 - added in liquid form

Treatment
vehicle control

Summary

Silymarin restores glucose mediated decreased cell migration.

Silymarin

Formulated with lyophilised wafers for topical application

Summary

Silymarin can be incorporated into a lyophilised wafer for topical application to recalcitrant wounds.

normoxia

hypoxia

Retinal explant model

Agarose and collagen

Agarose and collagen

Agarose + Collagen

<u>Agarose</u>

Haematoxylin and eosin staining of retinal explant

 Model shows retinal structural changes

Immunohistochemistry (HIF1 α) of retinal explant

Hyperbaric oxygen therapy

What is Hyperbaric Oxygen Therapy (HBOT)?

Hyperbaric oxygen therapy (HBOT) is done in a sealed chamber pressurized at 1 ½ to 3 times normal atmospheric pressure where the patient is breathing pure oxygen.

American Cancer Society. (2010). Hyperbaric Oxygen therapy. Retrieved October 22, 2010 from http://www.cancer.org/Treatment/TreatmentsandSideEffects/ComplementaryandAlternativeMedicine/Herbs-VitaminsandMinerals/hyperbaric-oxygen-therapy

Treatment of recalcitrant ulcers

Mechanism of action

- O2 carried by erythrocytes
- HBOT increases O2 solubility
- Crosses cell membranes entering bodily fluids
 - Plasma, lymphatic system, interstitial fluid, cerebrospinal fluid
- Toxicity
 - Lungs (oedema)
 - CNS toxicity (grand mal)
 - Eyes (myopia)

Capillary growth - angiogenesis

HBOT and hyperoxia

Treatment of recalcitrant ulcers

Summary

- Greater understanding of mechanisms of vascular disease
- Facilitates development in management of diabetes
- Provides opportunities for continuing development of therapeutic options

