Community Oriented Integrated Ecosystem Approach for Conservation and Sustainable Management of Forest Genetic Resources:

Challenges in Biodiversity Conservation in Natural Tropical Forest – India

India has a long history of conservation and management of biodiversity/medicinal & aromatic plants.

2

India is one of the 12 mega diversity countries

Wide range of physical and climatic conditions provide:

- > Diverse ecological habitats
- Diverse Forest Types:
 - Alpine Forests in Himalayas
 - Dry and Moist Tropical Deciduous
 - Wet Evergreen Forests
 - Mangroves.

•

Contribution of Forests: Ecosystem services supporting to:

- 7% of the worlds biodiversity
- 16% of world population
- 18% of cattle population
- 2.5% of world's geographic area and about 2% of forest area
- 7% of world's flora

(328 families with 21,000 representative plant species)

Contribution of Forests: Ecosystem services supporting to

7.6% of world's mammals
12.6% of world's bird species
6.2% of world's reptile species
4.4% of world's amphibians
11.7% of world's fish species
Several species endemic to India

(Source: FSI, 2004)

Insights

- Recorded forest area of the country: 23.38%
- Second largest land use after agriculture.
- Owner State Government.
- About 300 million poor people depend for livelihood.
- About 70% supply of raw material to Pharmaceutical industries.

How forests support the "natural infrastructure"

Ecosystem Goods & services ecological,economical,societal

Air quality

Pest & disease control

Watershed protection and regulation

Wild species & habitat protection

Plant pollination

Carbon sequestration and storage

Soil formation and fertility

Decomposition of wastes

Landscape beauty

Needs and Risks associated with increased dependency

Contribution of Native biodiversity

- Major NTFPs for livelihood of dependent people
- ✓ 500 m people rely for subsistence
- About 40% of total forest revenue
- ✓ 55% of forest based employment
- ✓ Supply of raw materials from forests to Pharmaceutical industries

Challenges for conservation

- Progressive degradation of forest
- >About 40% categorized as degraded forests.
- Emerging challenges on regional biodiversity conservation & unsustainable management
 - **Qualitative**
 - Quantitative &
 - Functional

Over exploitation of resources

- Dependency for livelihood
- Ignorance of traditional practices for collection
- ✓ Over demand / trade

Unregulated biotic factors

Forest land diversion, grazing, fire etc.

Habitat loss

- Emergence of ecologically non congenial condition
- Invasion of alien species.
- Direct impact on native FGR
- **Impact of climate change**
- ✓ Threat to native FGR in-situ

Un-sustainable use not beneficial "Neither in ecological nor in social terms"

Phyllanthus emblica L.Aegle marmelos (L.) Gorrea"Aonla""Bel"

Impact on biodiversity

Emerging threats

Ecological Perspective:

Destructive Harvesting of tubers, roots, leaves, fruits, flowers, bark, gum, resins and dyes by local dependent communities from natural forests.

- Social Perspective:
 - Dependency of poor people for
 - Sources for income and livelihood security
 - Ignorance of traditional practices
 - Lack of Knowledge of scientific input of harvesting and primary processing
- Economic Perspective:
 - Growing demand on herbal medicines
 - Gap in demand and supply
 - Decreasing trend of resources supply from forests

Now the questions are :

- Threat on FGR committed to perpetuation/ sustainability *in-situ* ?
- The conditions of forest and its users acceptable?
- Prevailing management intervention adequate?
- Extinct wild genetic resources can be retrieved ?

No specific community based co-management system

- About 60% production of the collected NTFPs is unrecorded due to inadequate management interventions.
- No authoritative information on resource availability (Threshold limit) and sustainable management in natural forests.

Threat....

 \checkmark

Lacunae in policy implementation:

- Management intervention: unregulated, non sustainable, unscientific collection
- Right of free access of collection of NTFPs
 - Species specific management plan for NTFPs
 - Integrated co-management system

Need of strategic interventions for:

- Conservation and sustainable
 management of FGR in: Ecological,
 Social Economic and Policy terms.
- Collaborative integrated approach: institutional/users stakeholders.
- Regulated commercial exploitation,
 strict legal provisions to prevent
 destructive harvesting.

Curcuma caesia: (Kali haldi) Use: Roots are used in Asthama

Rubia manjith Roxb. : (Manjitha) Use: Roots are used in jaundice.

Need of strategic interventions for:.....

- Strict implication of sustainable harvesting limit of NTFPs collected from natural forests.
- Economical viable, user friendly and socially accepted techniques
- Trainings and capacity building programme for dependent communities

Contd...

- **Community oriented "Self Assessment Technique"** for conservation of biodiversity.
- Creating massive people's participation.
- Site specific models for enhancement of goods and services.

Need of strategic planning for determination of sustainable harvesting limits of utilizable NTFPs with community participations

Role of Institutional and users stakeholders

- Regular monitoring and evaluation with scientific inputs.
- Importance of natural forests in balancing ecological and economic benefits.
- Viable management partnership.

 \checkmark

Innovation in limit determination of sustainable harvesting in natural forests with community participation : Case study

- Determination of sustainable harvesting technologies with dependent community participation.
- Identification and protection of potentially rich biodiversity areas *in-situ*.

 Resource Inventory to evaluate present status/ availability/threats (quantitative assessment).
 Sustainable harvesting regimes (species specific Regeneration potential) *in-situ* conditions.

Phenological Diagram

Sustainable harvesting limits of some commercially important NTFPs with active community participation (Pandey & Saini , 2008 and Pandey et al , 2011)

S. No.	Name of Species	SHL (%)
1	Chlorophytum tuberosum (Safed Musli)	30%
2	Curculigo orchioides (Kali Musli)	68%
3	Curcuma angustifolia (Tikhur)	64%
4	Dioscorea daemona (Baichandi)	44%
5	Plumbago zeylanica (Chitrak)	64%
6	Asparagus racemosus (Satavar)	52%
7	Bauhinia vahlii (Mahul bela)	<mark>58</mark> %
8	Embelia basaal (Baibidang)	80%
9	Costus speciosus (Keokand)	58%
10	Phyllanthus amara (Bhui aonla)	71%
11	Andrographis paniculata (Kalmegh)	42 %

Determination of sustainable harvesting limits.....

1. Chlorophytum tuberosum (Safed Musli)

Index: harvesting treatments 1=20%; 2=40%; 3=60%; 4=80%

SHL= 30% *(PSY= >30%)

Determination of sustainable harvesting limits.....

2. Curculigo orchioides (Kali Musli)

Index: 1=20%; 2=40%; 3=60%; 4=80% harvesting percentage

SHL= 68 %

*(PSY= >68%) *= Progressive Sustainable Yield

3. Curcuma angustifolia (Tikhur)

SFRI, Jabalpur

Curve Fit model of Linear regression for determination of SHL

Index: 1=20%; 40%; 3=60% and 4=80% harvesting treatme SHL = 64% , *(PSY= >64%)

4. Dioscorea daemona (Baichandi)

Index: 1: 20 %; 2:40%; 3: 60% and 4: 80% harvesting Groups SHL = 44% , *(PSY= >44%)

5. Plumbago zeylanica (Chitrak)

Curve Fit model of Linear regression for determination of SHL

Index: 1=20%; 2=40%; 3=60% and 4=80% harvesting SHL= 64%, *(PSY= >64%)

6. Bauhinia vahlii (Mahul leaves)

SFRI, Jabalpur

Index: 1= 20 %, 2=40%, 3=60%, 4=80% and 5=100 % harvesting intensity. SHL: 58% , *(PSY= >58%)

7. Asparagus racemosus (Satavar):

Curve fit Model for *Asparagus racemosus.*

Need of scientific inputs:

An innovative "Self-Assessment" method with \checkmark community participation. distribution, inventory, ecology, Status: \checkmark phenological observation Habitat requirements \checkmark **Regeneration/growth dynamics** \checkmark **Yield-potential** \checkmark Assessment/monitoring of the consequences \checkmark Of commercial harvesting from forests. **Encourage traditional practices for conservation** \checkmark and sustainable use Institutional role to analyze rules, regulations in \checkmark favor of conservation and sustainable management of FGR

Thanks

