

Does Insect- Bacterial Symbiosis contribute to Insecticidal Resistance?; Evidence from *Helicoverpa armigera* (Hub.) (Lepidoptera: Noctuidae)

R. Gandhi Gracy ICAR-NBAIR Bangalore

Each would have performed **mutually benefiting functions** from their symbiotic relationship.

The **aerobic bacteria** would have handled the toxic oxygen for the **anaerobic bacteria**, and the **anaerobic bacteria** would utilize ingested food and protected the **aerobic "symbiote".**

Insect Endosymbionts Classification

Primary endosymbionts have been associated with their insect hosts for many millions of years (from 10 to several hundred million years in some cases), they form obligate associations.

Feature:

- \checkmark They localize inside bacteriocytes.
- \checkmark They are essential for fitness.
- \checkmark They are transmitted maternally.

- ✓ They display strict host-symbiont co-evolutionary patterns.
- \checkmark They are uncluturable outside of their host.

Example

Aphid-Buchnera, Wigglesworthia - tsetse flies Baumannia sharpshooters, Carsonella -psyllids, Tremblaya mealybugs, Blochmannia - carpenter ants , Nardonella – weevils.

Secondary endosymbionts

- They exhibit a more recently developed association.
- **They are mostly facultative.**
- □They are sometimes horizontally transferred between hosts.
- □They live in the hemolymph/gut of the insects (not specialized bacteriocytes).
- Play major role in protection, stress tolerance, reproductive manipulation, defense, resistant etc.,
- **Can be culturable.**
- Example

Sodalis glossinidius, Wolbachia, Hamiltonella defensa, Spiroplasma etc.,

Evolutionary history	Features	Examples		
	Bacteriome-associated obligate symbiont Ancient codiversification of host and symbiont, no symbiont exchange among lineages	Buchnera aphidicola Wigglesworthia glossinidia Blochmannia species Baumannia cicadellinicola		
	Ancient reproductive parasite Occasional horizontal transfer and recomb- ination between hosts	Wolbachia pipientis Spiroplasma species Rickettsia species		
	Facultative symbiont Occasional horizontal transfer Recent coalescence of symbiont lineages Recent symbiotic origin	Hamiltonella defensa Regiella insecticola Serratia symbiotica Arsenophonus species		
Time in millions of years	- Host lineage -	- Symbiont lineage		

Role of Endosymbionts

- 1. Nutritional Supplements
- 2. Protection
- 3. Immunity
- 4. Manipulation in reproduction
- 5. Speciation
- 6. Host determination

Protection

- Natural Enemies
- ≻Pathogens
- **>**Resistance to Insecticides
- Stress tolerance

Resistance to Insectisides

The beanbug *Riptortus pedestris* and allied stinkbugs harbor mutualistic gut symbiotic bacteria of the genus *Burkholderia*.

 In agricultural fields, fenitrothion-degrading *Burkolderia* strains are present at very low densities.

 Fenitrothion-degrading Burkholderia strains establish a specific and beneficial symbiosis with the stinkbugs and confer a resistance of the host insects against fenitrothion

Fenitrothion degradation

Cont.

Yoshitomo et al.2012.Symbiont-mediated insecticide resistance, PANS, 109(22)

Analysis on insecticide resistance was carried out at NBAIR, Bangalore.

Filed collection - Tamil Nadu, Andhra Pradesh, Karnataka, Punjab, Gujarat, Maharastra.

Populations: Bt-cotton, Pigeon pea, Chick pea and Tomato.

Insecticides: Emamectin benzoate, Spinosad, Cypermethrin, λ- Cyhalothrin, and Thiodicarb. Analysis of endosymbionts diversity in different population of *H. armigera*

Culture Dependent Method

Isolation and identification of gut microflora on medium(NA, LB, YPDA).

PCR based identification- 16SrDNA

Diversity of microbial symbionts in resistance populations vs. susceptible population.

Isolation from Raichur

Isolation from Rajkot

Bacterial Isolation identified

SI.No.	Bacterial species	GenBank Accession No.	Isolated populations
1	Stenotrophomonas maltophilia	KM262840	Amreil, Rajkot
2.	<i>Stenotrophomonas</i> sp	KM262841	Godaveri
3.	Bacillus subtilis	KM262842	Amreli, Godaveri, Rajkot, Raichur
4.	Bacillus amyloliquifaciens	KF878388	Amreli
5.	<i>Acinetobacte</i> r sp	KM243755	Godaveri, Raichur, Amreli, Rajkot
6.	Enterococcus sp	KM262843	All the 5 populations

Denaturing Gradient Gel Electrophoresis

DDGE of populations of Helicoverpa

1. Amreli

- 2. Rajkot
- 3. Ludhiana
- 4. Manasa
- 5. Thiruvallur
- 6. Beed
- 7. Godaveri
- 8. Raichur
- 9. Dharward 10.Haveri
- 11.Mallur
- 12.Bangalore
- 13.Lab Popu. Total No. of bands

The bacterial diversity is more in resistance populations.

Evidence of unique bacteria present in resistance populations which were absent in susceptible populations.

There is a clear evidence of role of symbiotic bacteria in the insecticide resistance.

