Energy disaggregation on hourly wholebuilding electricity data

Qing Gao School of Data Science, Fudan University 2017/9/11

Outline

- Background and motivation
- Disaggregation Model
- Data

- Disaggregation Results
- Summary

Background

Why disaggregation

- Efficient energy arrangement, redesign better appliance
- Improve building operational efficiency
- Energy saving, reducing cost of energy supply

Research status[1]

Data freq	1h-15min	1min - 1s (Hz)	1-60Hz	60Hz-2kHz	10-40kHz	>1MHz
Data features	Duration and time of appliance use	Steady state sto transitions	eps/ power	Current, voltage, low order harmonics	Current, voltage, medium order	Current, voltage, high order
Algorithm	Machine learning, sparse coding	Steps signature matching	es database	Event identification	Machine learning, FHMM	Machine learning, neural network
Appliances identified	loads related with temp, continuous, time	Top<10 types: refrigerator, ACs, heaters, dryers, etc.	10-20 types	Not known	20-40 types: toasters, computers, etc.	40-100 specific appliances: light 1, light 2

[1] K. Carrie Armel, et. al., Energy policy 52 (2013) 213-234.

Background

Traditional methods

- Event based disaggregation, electricity data alone
 - ✓ Unsupervised models
- High frequency electricity data
 - ✓ Appliance power curves✓ lab experiments
- For low frequency data
 - supervised
 - Sparse coding
 - FHMM model

✓ more information input (adopted)

(Hart, 1992, IEEE 80 (12), 1870–1891.)

Motivation

Supervised disaggregation for commercial buildings

- Calibrate the meters for appliances
- Training model, improve accuracy
- Disaggregation for buildings without sub meters

Disaggregation

Model set

- Training + test sets
 - \checkmark First part, training model with all observation
 - \checkmark Second part, test the model with only total data

Steps

- 1. Data loading and cleaning
- 2. Model training for appliances
- 3. Predict for each appliance
- 4. Repair by total data
- 5. Calculate the accuracy

Disaggregation: data cleaning

Clean methods

- Outliers: 3 standard deviation, 4 weeks for reference
- Missing: Linear interpolation
- For real data
 - clean respectively, appliances, weekday, weekend, hours
 - Aggregation data, compare to the sum of separated appliances
 - \checkmark Larger parts, smaller parts

where i for separated appliance, $m^{(i)}$ is the number of states for i-th appliance, and

$$\overline{y}_{t}^{(i)}\left(S_{t}^{(i)}\right) = c_{i}\left(S_{t}^{(i)}\right) + \overline{\beta}_{i}\left(S_{t}^{(i)}\right) \times \overline{\operatorname{Out}_{t}} = f^{(i)}\left(S_{t}^{(i)}\right)$$
$$p\left(y_{t}^{(i)}\left(S_{t}^{(i)}\right)\right) \sim N\left(\overline{y}_{t}^{(i)}\left(S_{t}^{(i)}\right), \sigma_{i}^{2}\left(S_{t}^{(i)}\right)\right)$$

- State probability, transition matrix are combination of appliances
- Number of states $\prod_{i=1}^{N} m^{(i)}$

[1] Kolter, et.al.(2012) International Conference on Artificial Intelligence and Statistics Pp. 1472–1482.

HMM model for each appliance

- Initial state probability

$$\sum_{j=1}^{m^{(i)}} \delta_j^{(i)} = 1, \qquad 1 \le j, k \le m^{(i)}$$

Transition matrix

$$\Gamma^{(i)} = \left(\gamma_{jk}^{(i)}\right), \qquad \gamma_{jk}^{(i)} = p\left(S_t^{(i)} = j \middle| S_{t+1}^{(i)} = k\right)$$

$$\sum_{k=1}^{m^{(i)}} \gamma_{jk}^{(i)} = 1, \qquad 1 \le j, k \le m^{(i)}$$

Number of degree of freedom

NDF =
$$(m^{(i)} - 1) + (m^{(i)^2} - m^{(i)}) + m^{(i)} \times (n_{out} + 1) + m^{(i)}$$

Initial state Transition matrix Outer effects Normal dis

Estimation with EM algorithm by definite $m^{(i)}$

$$\log \mathbf{L}_{\mathbf{T}}^{(i)} = \log \delta^{(i)} + \sum_{t=2}^{T} \log \gamma_{S_{t-1},S_t}^{(i)} + \sum_{t=1}^{T} \log p\left(y_t^{(i)}\left(S_t^{(i)}\right)\right)$$

Initial state Transition matrix Conditional probability density
$$= \sum_{j=1}^{m^{(i)}} u_j^{(i)}(t) \log \delta_j^{(i)} + \sum_{j,k=1}^{m^{(i)}} \left(\sum_{t=2}^{T} v_{jk}^{(i)}(t)\right) \log \gamma_{jk}^{(i)} + \sum_{j=1}^{m^{(i)}} \sum_{t=1}^{T} u_j^{(i)}(t) \log p\left(y_t^{(i)}\left(S_t^{(i)}\right)\right)$$

The third part

$$u_j(t) \left(y_t - \hat{y}_t(j) \right) \sim N(0, \sigma_j^2)$$
$$\sigma_i^2 = \frac{\sum_{t=1}^T u_i(t) \left(y_t - \hat{y}_t(i) \right)^2}{T}$$

the parameters equals to that from linear regression

$$u_j(t)y_t = c_j u_j(t) + u_j(t)\vec{\beta}_i\left(S_t^{(i)}\right) \times \overrightarrow{\operatorname{Out}_t} + \varepsilon_t(j)$$

Decide the number of states $m^{(i)}$

- Loop from 2 to 25

residual = $y_t^{(i)} - \sum_{j=1}^{m^{(i)}} \hat{y}_t (S = j) \times p(S_t^{(i)} = j)$ weak stable

$$BIC = \log \frac{SSR_p}{T} + \log(T) \frac{ndf}{T}$$
 least

$$\frac{\left(y_t^{(i)} - mean(y^{(i)})\right)}{sd(y^{(i)})} < 5 \qquad \text{no outliers}$$

Repeat fitting, take best fit result

Disaggregation: predict

Appliance, multi stages (h), get the expected value

1. State prob now
$$\vec{u}(t) = \vec{p}_t(S|y_t) = \frac{\vec{p}_t(S)^T \vec{p}_S(y_t)}{\sum \vec{p}_S(y_t)}$$

2. State prob future
$$\vec{p}_{t+h}(S) = \vec{u}(t)^T \Gamma^h$$

3. State value future
$$\vec{y}_{t+1}(S) = c_j + \sum_{k=1}^n \beta_{jk} \times \operatorname{Out}_{k,t+h} \left(S_t^{(i)} = j \right)$$

4. Expect value $\hat{y}_{t+1} = \vec{p}_{t+h}(S)^T \vec{y}_{t+h}(S)$

Aggregation data, determine state probability

- 1. State probs $U_s(t) = \prod_{i=1}^N u_{j_i}^{(i)}(t)$, $s = \sum_{i=1}^N j_i \times \prod_{k=1}^{i-1} m^{(k)}$
- 2. State prob next $\vec{p}_{t+1}^{tot}(S) = \vec{U}_s(t)^T \Gamma^{tot}$ 3. Measured value next Y_{t+1}

Conditional prob
$$\vec{U}_{S}(t+1) = \vec{p}_{t+1}^{tot}(S|Y_{t}) = \frac{\vec{p}_{t+1}^{tot}(S)^{T}\vec{p}\left(Y_{t+1}\left(S_{t+1}^{(1:N)}\right)\right)}{\sum \vec{p}\left(Y_{t+1}\left(S_{t+1}^{(1:N)}\right)\right)}$$

Disaggregation: result

Repair appliances prediction by deviation

$$y_{t+1day}^{(i)} = \hat{y}_{t+1day}^{(i)} + per_1 \times per_2 \times \left(Y_{t+1day} - \sum_{i=1}^{N} \hat{y}_{t+1day}^{(i)}\right)$$

$$\operatorname{per}_{1}(\Delta) = \frac{\hat{y}_{t+1day}^{(i)} - y_{t}^{(i)}}{\sum_{i=1}^{N} \hat{y}_{t+1day}^{(i)} - y_{t}^{(i)}}, \quad \operatorname{per}_{2}(\Delta) = \frac{\sum_{j=1}^{m(i)} \operatorname{prob}_{j}^{(i)} \times \sigma^{(i)^{2}}}{\sum_{i=1,j=1}^{n,m(i)} \operatorname{prob}_{j}^{(i)} \times \sigma^{(i)^{2}}}$$

where

Accuracy (relative uncertainty)

rela =
$$\sqrt{\frac{\sum_{t} (\mu_t - y_t)^2}{\sum_{t} y_t^2}}$$

Data

Electricity

- Mall, office, hotel, composite
- Time: 2016-1-1 0:00 to 2016-12-31 23:00, hourly
- Measured items: total, lighting, air condition, movement, others

More

- Temperature⁽²⁾, raining, wind velocity, pressure, humidity
- Holiday: 10 legal holiday, 11 weekend, 00 workday;
- Day-night: dummy variable; hour, 0~23
- Cleaning
 - Outliers
 - Missing values
 - Unknown = total-sum

Data status

Data status

Electricity (day night obvious, air condition season sensitive)

mall	hour	Total (kWh)	Light (kWh)	AC (kWh)	Mv (kWh)	Other (kWh)
Day	9-22	1200~2300 (season)	800	0-800 (season)	200	100
night	23-8	~200	100	0	20	0

Comparison all

	Mall	Office	Hotel	Composite			
Max (kWh)	2500	2000	3500	2500			
Day	9-22	6-18	8-23	8-22			
Dominant	Lighting	lighting	Acs summer, lighting other	Acs summer, lighting other			
Week cycle	No	Lighting, Acs, movement	Lighting	Lighting			
Common	Air conditions sensitive to season, large fluctuation; spring festival effect obvious, difference between appliances small						

Disaggregate result: mall

■ Training

3000

2000

1000

0

282

elec (kV/h)

ltem	Lighting	Air condition	Movement	Others	Unknown	Tot
N states	16	13	12	16	11	12
Sigma	15.02	20.9	4.98	3.41	31.38	67.04
Rela err (%)	1.98	5.33	2.91	15.25	8.61	3.90

total

other

movement

unknown

Disaggregate result: mall

Predicting in testing set

ltem	Lighting	Air condition	Movement	Others	Unknown	Tot
Stages	Multi	Multi	Multi	Multi	Multi	One
Rela err (%)	13.99	55.39	12.52	38.32	34.10	16.33

lighting

unknown

Disaggregate result: mall

Repair by aggregation data

Item	Lighting	Air condition	Movement	Others	Unknown
relative err(%)	12.46	37.53	10.52	32.02	32.25

movement

other

unknown

Disaggregate result: office

ltem	Lighting	Air condition	Movement	Others	Unknown	Tot
N states	13	12	13	10	4	18
Training rela err (%)	2.13	6.32	4.29	3.76	27.13	2.87
sigma	11.61	23.19	6.31	7.12	43.81	40.4
Predict rela err (%)	19.59	43.47	25.70	15.93	72.43	19.11
Last rela err (%)	14.01	29.50	20.63	19.35	61.26	—

time

other

Disaggregate result: hotel

Item	Lighting	Air condition	Movement	Others	Unknown	Tot
N states	10	7	3	8	3	7
Training rela err (%)	3.06	6.67	14.16	5.64	25.17	4.04
sigma	17.09	62.44	30.03	16.98	92.08	98.82
Predict rela err (%)	16.14	50.67	22.85	13.79	95.20	11.21
Last rela err (%)	16.92	36.21	33.91	14.93	96.57	—

lighting

unknown

time

²¹

Disaggregate result: composite

ltem	Lighting	Air condition	Movement	Others	Unknown	Tot
N states	18	9	10	9	3	10
Training rela err (%)	2.45	5.38	4.04	4.63	35.93	3.15
sigma	10.93	29.48	8.05	6.13	25.94	44.56
Predict rela err (%)	22.14	46.68	23.92	18.13	64.91	9.09
Last rela err (%)	13.97	35.47	18.72	15.82	62.97	—

Disaggregation comparison

ltem		Lighting	Air condition	Movement	Others	Unknown	Tot
Training relative error (%)	Mall	1.98	5.33	2.91	15.25	8.61	3.90
	Office	2.13	6.32	4.29	3.76	27.13	2.87
	Hotel	3.06	6.67	14.16	5.64	25.17	4.04
	Composite	2.45	5.38	4.04	4.63	35.93	3.15
Result relative error (%)	Mall	12.46	37.53	10.52	32.02	32.25	—
	Office	14.01	29.50	20.63	19.35	61.26	—
	Hotel	16.92	36.21	33.91	14.93	96.57	—
	Composite	13.97	35.47	18.72	15.82	62.97	—

- Testing relative uncertainty larger than training
- The larger of relative uncertainty for training, the larger disaggregation
- Performance similar for buildings
- Air condition, unknown largest both training and disaggregation, for large fluctuation

Summary

- Extend FHMM model with bonus data to disaggregate hourly whole-building electricity consumption into appliances
- Apply the method to several commercial buildings
 - Successfully disaggregate and get rules of appliances
 - Performance for different buildings are similar
 - Model training perfect, relative uncertainty lower than 7%
 - Model testing, air condition not good for large fluctuation
- Extend to similar buildings without collectors
 - Input the characters of buildings into the model
 - Training different models for different type buildings
 - Important for energy monitoring, need response, accurate prediction

