Plant-based Monitoring for Yield Prediction of Citrus under Differential Irrigation

Dr P. Panigrahi Scientist 'SS'

Directorate of Water Management, Bhubaneswar, Odisha, India

Introduction

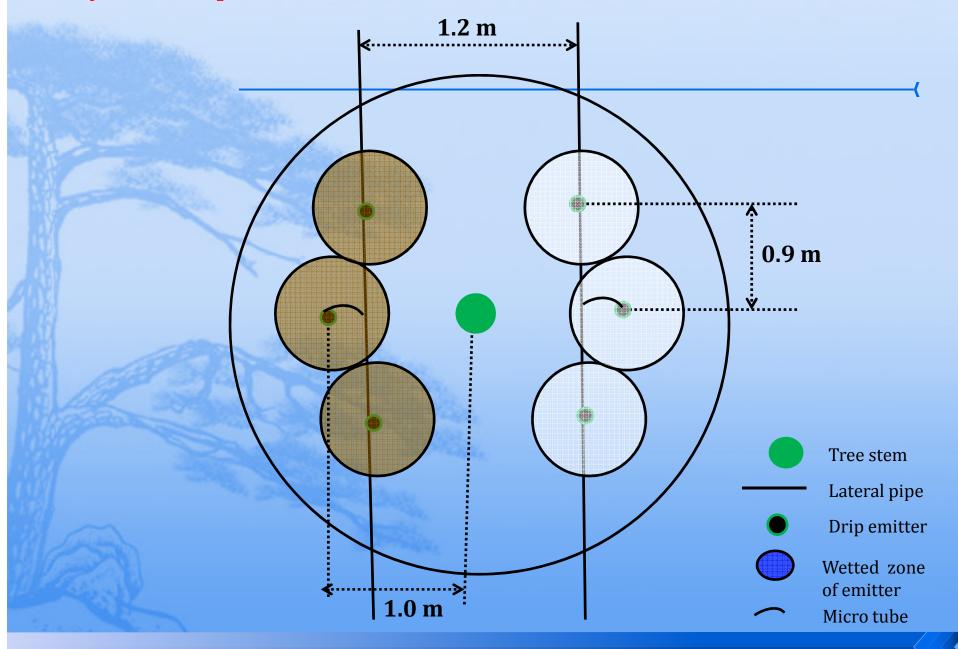
- Water is the major constraint to crop production in many parts of the world.
- > To sustain crop production in water scarce environments, deficit irrigation (DI) is a suggestable irrigation practice.
- DI is an irrigation strategy in which water is applied less than the full water requirement of the crop.
- Citrus, the third important fruit crop in India, has low productivity and it varies widely from year to year depending upon climate and water availability in different regions of the country.
- In changing climate scenario, it is utmost essential to optimize water management and prediction of yield of the crop.

Treatment details of sustained deficit irrigation (DI) and Partial root zone drying (PRD) irrigation Scheduling

DI₅₀: Irrigation at 50% ETc

DI₇₅: Irrigation at 75% ETc

PRD₅₀: Irrigation at 50% ETc through PRD


PRD₇₅: Irrigation at 75% ETc through PRD

FI: Irrigation at 100% ETc throughout the crop

period

Replication: 4; Plants per replication: 2; Design: RBD

Layout of drip emitters in tree basin and their wetted zone under PRD

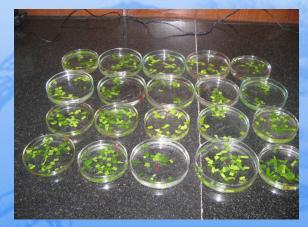
Irrigation water quantity estimation

The water application for fully-irrigated trees was computed as:

$$ETc = Kp \times Kc \times Ep$$

The volume of water applied under 100% ETc was estimated based on the formula (Germanà et al., 1992):

$$V_{id} = \pi \left(D^2 / 4 \right) \times \left(ET_c - R_e \right) / E_i$$


Measurements and analysis

Soil water measurement

Leaf and stem water potential measurement

For Relative leaf water content

Leaf physiological parameters

Canopy reflectance

Root sampling and analysis

Mature Kinnow fruits on trees

Harvested Kinnow fruits

Juice of Kinnow

Analysis of Juice

Indices

1. The water stress integral (S_{ψ}) for each treatment was calculated using the midday leaf and xylem water potential data, according to the equation defined by Myers (1988):

$$S_{\psi} = Absolute \ value \ of \sum_{i=0}^{i=1} \{(\psi i, i+1) - c\} \ n$$

- where S_{ψ} is water stress integral (MPa day), $\psi_{i,i+1}$ is average midday leaf/stem water potential for any interval i and i+1 (MPa), c is maximum leaf/stem water potential measured during the study and n is number of days in the interval.
- 2. a. Relative leaf water content (RLWC)was determined by the formula (Bowman, 1989):

 RLWC (%) = {(FW DW) / (TW DW)} x 100
 - b. Leaf water concentration (LWC) was determined using the formula (Peñuelas et al., 1997):LWC = {(FW-DW) / (FW)} x 100

3. The spectral reflectance indices related to water deficit conditions are calculated as:

Water band index (WBI) = (R_{900}) / (R_{970}) (Penuelas et al., 1995); Normalized Difference water index (NDWI) = $(R_{857} - R_{1241})$ / $(R_{857} + R_{1241})$ (Gao, 1995); Moisture stress index (MSI) = (R_{1599}) / (R_{819}) (Hunt et al., 1989); Normalised difference infrared index (NDII) = $(R_{819} - R_{1649})$ / $(R_{819} + R_{1649})$ (Jackson et al., 2004), Simple ratio (proposed) = (R_{1360}) / (R_{2250})

where R and the subscript numbers indicate the light reflectance at the specific wavelength (in nm).

Total N, P and K in leaf (%, dry weight basis) of 'Kinnow' mandarin as affected by various irrigation treatments

Treatments	ga.	2010			2011	
	N	P	K	N	P	K
DI ₅₀	2.31a	0.15a	1.42a	2.43a	0.16a	1.44a
DI ₇₅	2.46a	0.19a	1.54b	2.46b	0.19a	1.56c
PRD ₅₀	2.35a	0.18a	1.48c	2.45b	0.18a	1.49d
PRD ₇₅	2.47b	0.21a	1.59a	2.49c	0.19a	1.61b
FI_{100}	2.69c	0.22a	1.64c	2.72d	0.20a	1.66d

Optimum range of leaf-N (2.28–2.53%), P (0.10–0.13%), and K (1.28–1.63%) for Kinnow (Hundal and Arora, 2001; Srivastava, 2011).

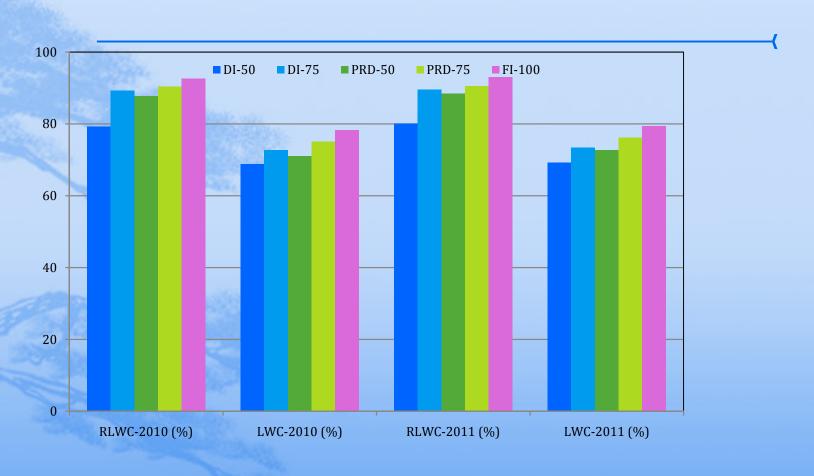
Total Fe, Mn, Cu and Zn in leafs (ppm, dry weight basis of 'Kinnow' mandarin as affected by various irrigation treatments

Treatments		20	10		2011						
	Fe	Mn	Cu	Zn	Fe	Mn	Cu	Zn			
DI ₅₀	54.0a	48.6a	7.3a	24.7a	56.8a	50.3a	7.8a	24.9a			
DI ₇₅	58.4a	57.8a	7.9a	25.6a	58.7a	58.2a	8.2a	24.1a			
PRD ₅₀	55.6a	51.2a	7.3a	25.2a	56.7a	51.8a	7.9a	25.5a			
PRD ₇₅	59.9a	58.4a	8.2a	25.8a	61.4a	58.9a	8.4a	26.9a			
FI ₁₀₀	62.6b	61.5b	8.2a	26.9b	62.8b	61.6a	8.9a	27.2b			

Optimum values (62.3–89.4 ppm Fe, 58.7 – 76.3 ppm Mn, 8.1 – 10.3 ppm Cu and 26.3 – 28.5 ppm Zn) of Kinnow mandarin (Hundal and Arora, 2001; Srivastava, 2011).

Leaf/stem water potential and leaf /stem water stress integral during 2010 and 2011

SΨl -2011


SΨs -2010

SΨs -2011

10

SΨl -2010

RLWC and LWC in 2010 1nd 2011

Leaf physiological parameters under different irrigation treatments in 2010 and 2011

Treatments		20	10		2011						
- 1985 C	Pn	gs	Tr	LWUE	Pn	gs	Tr	LWUE			
DI ₅₀	2.89a	21.07b	1.66b	1.74c	2.94a	20.50b	1.53b	1.92a			
DI ₇₅	2.92a	24.80d	1.84d	1.58a	3.41b	23.48d	1.60d	2.13b			
PRD ₅₀	2.90a	20.13a	1.43a	2.02e	3.38b	20.04a	1.31a	2.58d			
PRD ₇₅	2.95b	23.13c	1.79c	1.65b	3.45b	22.83c	1.57c	2.17b			
FI ₁₀₀	3.88c	37.78e	2.08	1.86d	4.37c	31.07e	1.74e	2.51c			

Tree growth under various irrigation treatment

Treatments		20	10		2011						
	TH	SD	CD	CV	TH	SD	CD	CV			
DI ₅₀	33.4a	20.4a	25.8a	0.81a	21.7a	19.2a	20.1a	0.64a			
DI ₇₅	36.2b	22.5b	31.3b	0.83a	26.7b	20.9b	27.5b	0.77a			
PRD ₅₀	32.5a	19.7a	25.3a	0.79a	21.0a	19.0a	18.8a	0.60a			
PRD ₇₅	35.9b	22.0b	30.9b	0.80a	26.5b	20.9b	26.9b	0.74a			
FI_{100}	40.7c	26.2c	48.7c	0.86b	36.0c	25.6c	32.3c	0.98b			

Mean water band index (WBI), normalised difference water index (NDWI), moisture stress index (MSI) and Normalised difference infrared index (NDII) of Kinnow mandarin under various irrigation treatments.

				Microsc 1	Hyperspe	ctral Indic	ees			
Treat			2010					2011		
ments	WBI	NDWI	MSI	NDII	SR	WBI	NDWI	MSI	NDII	SR
		4	~							
DI ₅₀	1.056	0.042	0.561	0.266	3.002	0.992	0.081	0.462	0.219	2.937
DI ₇₅	0.966	0.035	0.472	0.243	2.802	0.981	0.064	0.417	0.206	2.811
PRD ₅₀	1.006	0.037	0.481	0.251	2.862	0.984	0.076	0.431	0.207	2.828
PRD ₇₅	0.932	0.034	0.471	0.241	2.847	0.952	0.057	0.406	0.205	2.796
FI ₁₀₀	0.917	0.033	0.469	0.239	2.711	0.815	0.031	0.384	0.203	2.629

Parameters are significantly different from each other

Fruit yield, IWUE, and WUE in 2010

Treatments	\$50×		2010				
Miles.	No. fruits	No. fruits	Average	Fruit	IWUE	WUE	
	dropped/tree	harvested	fruit	yield	(t ha ⁻¹	(t ha ⁻¹	
		/tree	weight (g)	(t ha ⁻¹)	mm ⁻¹)	mm ⁻¹)	
DI ₅₀	170 d (96*,	671a	152.7a	51.23a	0.108c	0.056c	
	52**, 22***)						
DI ₇₅	135c	718b	161.6b	58.01c	0.081b	0.051b	
,5	(77, 40, 18)						
PRD ₅₀	148b	703b	160.7b	56.48b	0.119d	0.062c	
30	(80, 48, 20)			(8.7%)	(83%)		
PRD ₇₅	100a	755c	163.0b	58.73c	0.082b	0.053b	
7.0	(61, 28, 11)						
FI ₁₀₀	92 a	763c	162.3b	61.91d	0.065a	0.047a	
100	(64, 15, 13)	FEE					

Fruit yield, IWUE, and WUE in 2011

Treatments		88		2011			
		No. fruits dropped/tree	No. fruits harvested/	Average fruit	Fruit yield	IWUE (t ha ⁻¹	WUE (t ha ⁻¹
- The same of the		игоррешлиес	tree	weight	(t ha ⁻¹)	mm ⁻¹)	mm ⁻¹)
	-	The state of the s		(g)			
DI ₅₀		151e (82*, 50**, 19)	682a	154.7a	52.75a	0.150c	0.071c
DI ₇₅		109c (66, 32, 11)	739c	163.1b	60.26c	0.114b	0.067b
PRD ₅₀	188	126d (70, 46, 10)	711b	161.0b	57.23b (9.4%)	0.163d (81%)	0.077 d
PRD ₇₅		89b (52, 27, 10)	751c	165.2 b	62.03c	0.118b	0.070c
FI_{100}		79a (51, 20, 8)	776d	162.8b	63.20c	0.090a	0.061a

Fruit quality parameters of Kinnow fruits in 2010

Treatments	and the same			2010		
	Juice content (%)	TSS (⁰ Brix)	TA (%)	Ascorbic acid (mg/l)	Reducing Sugar (mg/l)	Total Sugar (mg/l)
DI_{50}	43.7a	11.4	1.02f	120.4a	50.4c	73.8c
DI ₇₅	46.7b	10.9c	0.82b	112.1a	42.9b	61.7a
PRD ₅₀	45.5b	11.2b	0.84b	119.8a	59.3d	67.4b
PRD ₇₅	48.2b	10.8b	0.82b	109.0c	47.1c	60.1a
FI ₁₀₀	49.6c	10.8c	0.81b	116.3b	37.2a	66.4b

Fruit quality parameters of Kinnow fruits in 2011

Treatments	Sac			2	011			
		Juice	TSS	TA	Ascorbic	Reducible	Total	
		content	(⁰ Brix)	(%)	acid	sugar	sugar	
	1188	(%)			(mg/l)	(mg/l)	(mg/l)	
DI ₅₀		43.1a	11.7 a	0.96f	128.7a	54.7c	75.4c	
DI ₇₅		45.9b	11.2c	0.80d	114.7a	45.9b	64.7a	
PRD ₅₀		44.3b	11.4b	0.83e	123.6a	61.7d	69.3b	
PRD ₇₅		47.9b	11.1b	0.80b	111.9c	49.2b	63.2a	
FI ₁₀₀		49.5c	10.9c	0.79b	119.1b	38.7a	68.7b	

Correlation matrix (Pearson's) for plant-based observations during 2010 and 2011 under DI

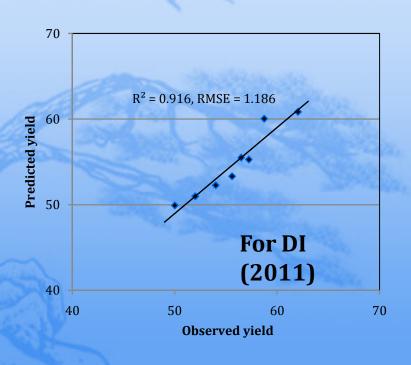
Parameters	Fruit	SD	CV	Leaf-	Leaf-	Leaf-	Leaf	SΨ ₁	SΨ _s	RL	LW	Pn	Tr	gs	LW	WBI	ND	MSI
	Yield			N	K	Fe	- Zn			WC	C				UE		WI	
SD	0.25^{*}																	
CV	0.33*	0.69*																
Leaf-N	0.57+	NS	0.29^{*}															
Leaf-K	0.61+	NS	0.41*	0.43*														
Leaf- Fe	NS	NS	NS	NS	NS													
Leaf-Zn	0.58^{*}	NS	NS	NS	NS	0.41*												
$S\Psi_1$	0.59+	0.21*	0.29*	0.43*	0.47*	NS	NS											
$S\Psi_{s}$	0.62+	0.26*	0.32*	0.52*	0.49*	NS	NS	0.93+										
RLWC	0.55+	0.20^{*}	0.17^{*}	0.32	0.32^{*}	NS	NS	0.74+	0.79+									
LWC	0.53+	NS	NS	0.30	0.25^{*}	NS	NS	0.59+	0.69+	0.74+								
Pn	0.55+	NS	0.23*	0.85+	0.44*	0.78+	0.36	0.62+	0.53+	0.66+	0.55+							
Tr	0.51+	NS	NS	0.69*	0.51+	0.43*	0.29	0.78+	0.83+	0.71+	0.69+	0.61+						
gs	0.61+	NS	NS	0.58*	0.55+	0.45*	0.38	0.79+	0.76+	0.75+	0.66+	0.58+	0.61+					
LWUE	0.60+	NS	NS	0.47*	0.36*	0.42*	0.21	0.73+	0.69+	0.59+	0.48+	0.39+	0.69+	0.57*				
WBI	0.57+	0.29*	0.29*	0.59+	0.47*	0.44*	NS	0.65+	0.67+	0.69+	0.52+	0.47*	0.55*	0.51*	0.30+			
NDWI	0.53*	NS	NS	0.53*	NS	NS	NS	0.38*	0.48*	0.57*	0.40*	0.33*	0.49*	0.40^{*}	0.21*	0.59+		
MSI	0.79+	0.22*	0.23*	0.51+	0.40^{*}	NS	NS	0.44*	0.41+	0.52+	0.47+	0.42+	0.43+	0.45*	0.17+	0.59*	0.54*	
NDII	0.49*	NS	NS	0.43*	0.36*	0.27*	NS	0.26*	0.32*	0.47*	0.49*	0.39*	0.37+	0.39*	0.26*	0.55*	0.48*	0.51*
SR	0.61+	NS	NS	0.54+	0.36*	NS	NS	0.57+	0.62+	0.63+	0.58+	0.47+	0.50+	0.44*	0.20*	0.84+	0.59*	0.60^{*}

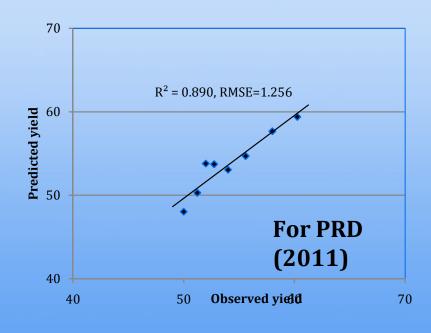
Correlation matrix (Pearson's) for plant-based observations during 2010 and 2011 under PRD

Donomoto	Email 4	CD	CV	Loof	Loof	Loof	Loof	CM	CIII	DI	LW	Dec	Т.,		LW	WDI	NID	Men
Paramete	Fruit	SD	CV					$5\mathbf{\Psi}_{l}$	$\mathbf{S}\mathbf{\Psi}_{\mathrm{s}}$			Pn	Tr	gs	LW	WBI		MSI
rs	Yield			N	K	Fe	- Zn			WC	C				UE		WI	
SD	0.19*																	
CV	0.27^{*}																	
Leaf-N	0.59+	NS	0.23^{*}															
Leaf-K	0.62+	NS	0.30^{*}	0.21^{*}														
Leaf- Fe	NS	NS	NS	NS	NS													
Leaf-Zn	0.58^{*}	NS	NS	NS	NS	0.33^{*}												
$S\Psi_1$	0.63+	0.27*	0.19*	0.38*	0.40*	NS	NS											
$S\Psi_s$	0.69+	0.29*	0.22*	0.42*	0.49*	NS	NS	0.91+										
RLWC	0.55+	0.20^{*}	0.16^{*}	0.22	0.33*	NS	NS	0.70+	0.87+									
LWC	0.51+	NS	NS	0.29	0.24*	NS	NS	0.63+	0.65+	0.87+								
Pn	0.59+	NS	0.20^{*}	0.84+	0.40^{*}	0.74+	0.31	0.54+	0.55+	0.60+	0.50+							
Tr	0.57+	NS	NS	0.61*	0.48+	0.38*	0.27	0.80+	0.80+	0.77+	0.66+	0.59+						
gs	0.44+	NS	NS	0.52*	0.50+	0.40^{*}	0.33	0.82+	0.82+	0.68+	0.60+	0.75+	0.75+					
LWUE	0.60+	NS	NS	0.38*	0.33*	0.40^{*}	0.28	0.74+	0.67+	0.50+	0.49+	0.37+	0.64+	0.59*				
WBI	0.50#	0.21*	0.27*	0.58+	0.42*	0.42*	NS	0.69+	0.65+	0.66+	0.52+	0.44*	0.55*	0.50^{*}	0.32+			
NDWI	0.49*	NS	NS	0.50*	NS	NS	NS	0.37*	0.44*	0.59*	0.40^{*}	0.34*	0.44*	0.43*	0.17^{*}	0.55+		
MSI	0.59+				0.41*	NS	NS				0.47+						0.50*	
NDII		NS	NS	0.43*		0.21*	NS				0.46*							0.49*
SR		NS	NS	0.54+	0.37*		NS				0.59+							
- SIX	0.04	110	110	0.54	0.57	110	110	0.57	0.07	0.04	0.59	0.44	0.51	0.40	0.22	0.01	0.74	0.03

Principal components with Eigen values and variances

PC		DI		PRD						
	Variables	Eigen %	Cumulative	Variables	Eigen	%	Cumulative			
		value variar	ice % of		value	variance	% of			
تحييا			variance				variance			
1	SΨ _s , Leaf- N, Leaf-K, SΨ _l , RLWC	6.964 40.20	0 40.20	SΨ _s , Leaf-N, Leaf-K, SΨ _l , RLWC	5.744	38.46	38.46			
2	gs, Pn	3.716 33.5	4 73.74	gs, Pn	2.899	32.11	70.57			
3	WBI, SR	2.449 15.2	8 89.02	WBI, SR	2.219	13.77	84.34			

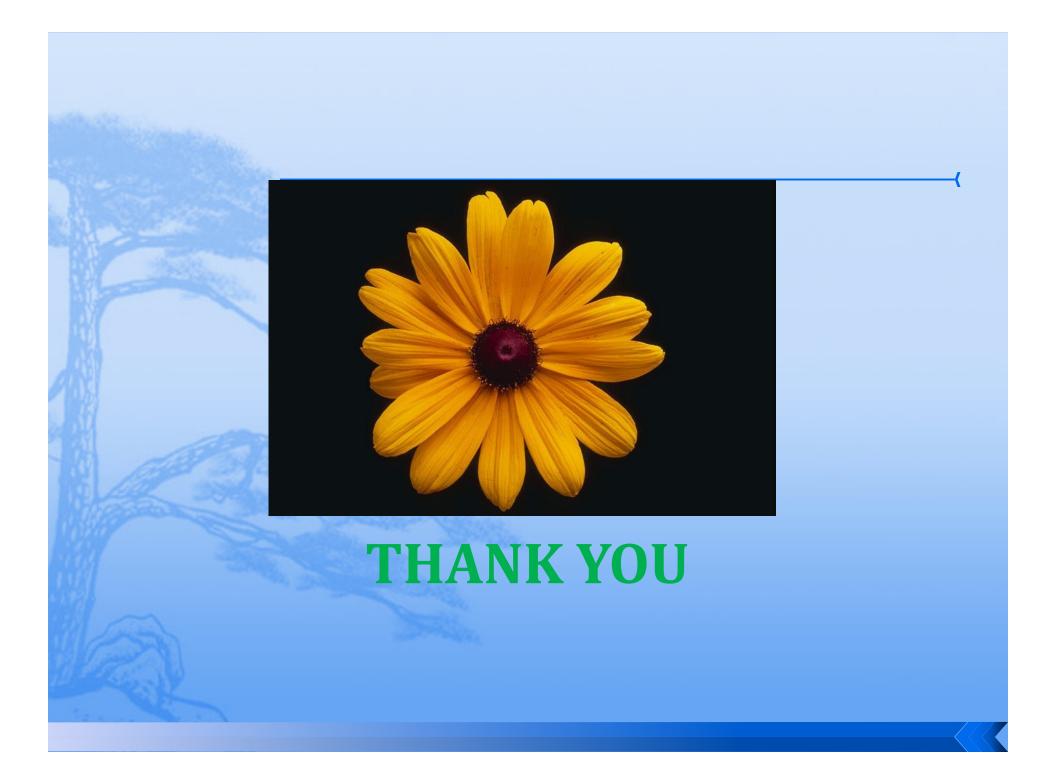

Yield prediction under DI and PRD


(i) For DI:

Fruit yield = -0.957 (Leaf-N) + 42.441 (Leaf-K) -0.275 (S Ψ_s) + 0.138 (gs) + $\sqrt{17.510}$ (WBI) -17.630 (P < 0.05; R² = 0.98; RMSE = 0.30%) (for 2010)

(ii) For PRD:

Fruit yield = 3.042 (Leaf-N) + 33.478 (Leaf-K) – 0.162 (S Ψ_s) - 0.089 (gs) + 13.409 (WBI) – 7.713 (P < 0.05; R² = 0.94; RMSE = 1.31%) (for 2010)



Conclusions

►PRD at 50% FI produced 9% less fruit yield, with marginally lower vegetative growth of the plants in comparison to that under FI. However, 50% water saving under PRD₅₀ boosted the irrigation water use efficiency up to 83% higher than that under FI.

➤ Yield prediction using PC-regression with leaf-N, leaf-K, stem water potential stress index, stomatal conductance and water band index gives satisfactory result. Therefore, this technique can be used for yield forecasting of citrus orchards under differential water stress condition and such methodology may be tried for other crops also.

