Structural and Molecular Investigations into Natural killer T-cell (NKT) and CD1d glycolipid recognition

> Praveena Thirunavukkarasu Jamie Rossjohn lab Monash University Australia

Human Immune System

- Bridge the gap between innate and adaptive immunity
- Function as `Innate-adaptive hybrids'
- Possess immunomodulatory potential

Natural Killer T (NKT) cells

- Share properties of both conventional T cells and Natural Killer (NK) cells
- Express a T cell receptor (TCR) that allows them to recognize antigens
- Constitute ~ 0.1% of all peripheral blood T cells

NKT cells recognize lipid antigens

T cell receptor (TCR)

α

Structure of CD1d

Types of NKT cells

Lipid antigen - α-Galactosylceramide

• Currently in human phase I/II trials as anti-cancer agent

Type I and Type II NKT TCRs docking modes

Borg et al., Nature, 2007

Patel et al., Nature Immun., 2012

What does docking orientation signify?

Type II

 TCRs dock on to peptide/MHC or lipid/CD1d in a conserved orientation

Are there any other CD1d-restricted α -Galcer reactive NKT subsets in humans and do they dock in a conserved manner?

Experimental Flow

Clone and express protein (Bacterial system)

Protein Purification

Protein Crystallization

Electron density map

Diffraction pattern

Crystals

́е

Expression and Purification of TCR

N-terminal

Variable

Domain

- Cloned into pET-30 vector
- Expressed in BL21 *E.coli* cells
- Inclusion body preparations were performed

Expression and purification of Human CD1d

Cloned into a dual promoter baculovirus transfer vector pBacp10pH.

9B2 TCR-hCD1d/ α -Galcer co-complexation

A Shift in peak of 5ml indicated complex formation

Structure of 9B2 ternary complex

20% PEG 8000 0.1M CHES pH 9.5

CD1d

β2M

Novel docking mode Docking angle ~110°

 α - chain β - chain α - Galcer α-GalCer (Fo-Fc electron density map)

α-GalCer (2Fo-Fc electron density map @ 0.8σ level)

Comparison of docking modes of different types of NKT TCRs

Type I Borg *et al.,* 2007 Nature

Interactions of 9B2 TCR with α -Galcer

- Dominated by CDR3β loop
- Q99 interacts with O6 of galactose moiety by Van der waals interaction.

- Dominated by CDR1α and CDR3α loops.
- G96, F29 and S30 are H-bonded to O2, O4 and O3 respectively.

9B2 TCR-CD1d interactions

Affinity measurements of 9B2 TCR with CD1d- α -Galcer

Q99A TCR mutant showed 2-fold reduction in affinity compared with wild type

Collaboration with University of Melbourne

Summary

- A new subset of CD1d-restricted NKT TCRs were identified in humans and termed as 'Atypical NKT cells'
- The ternary structure of 9B2 TCR revealed a novel docking mode (orthogonal) in clear contrast to Type I but comparable with Type II TCR
- 6'-OH of galactose moiety interacted merely with Q99 residue of TCRβ chain
- SPR studies showed the affinity of interaction of 9B2 TCR (wild type) with hCD1d- α -Galcer is 4.0 μ M and 2-fold reduction in affinity for Q99 mutant
- Diverse TCR repertoire broadens the spectrum of glycolipids recognised and thus leading to stimulation of NKT cells

Acknowledgements

Monash University

Jamie Rossjohn Jérôme Le Nours Onisha Patel Maria Sandoval Srinivasan Sundararaj

University of Melbourne

Dale Godfrey Adam Uldrich Daniel Pellicci

Australian Synchrotron synchrotron.vic.gov.au

Australian Government National Health and Medical Research Council

Australian Government
Australian Research Council