PHARMACOGNOSTIC AND PHYSICOCHEMICAL ANALYSIS OF THE SEEDS OF Citrullus lanatus L

D. Prasanthi Institute of Pharmaceutical Technology Sri Padmavathi Mahila Visvavidyalayam Tirupati-517502

CONTENTS

- INTRODUCTION
- OBJECTIVE
- MATERIALS AND METHODS
- RESULTS
- DISCUSSION
- CONCLUSION
- REFERENCES

INTRODUCTION

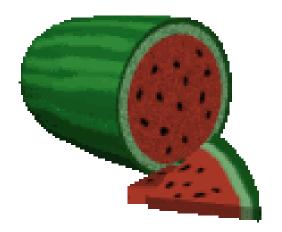
- Ayurveda is the oldest and most widely practiced system of medicine, which incorporates entire plants or their parts.
- The therapeutic efficacy of drugs used in various systems greatly depends on the use of proper and genuine raw materials.
- Because of these, assurance of safety, quality, and efficacy of medicinal plants and herbal products has now

become a key issue.

 Pharmacognostic studies play a vital role in assessing the quality, purity and identification plant drug.

The misuse of herbal medicine or natural product starts with wrong identification which can be solved by pharmacognostic studies of medicinal plants.

According to WHO, the pharmacognostic evaluation of a medicinal plant is the first step to be carried out to establish its identity and purity¹.


with Hence present study deals pharmacognostic, physicochemical preliminary phytochemical studies of see Citrullus lanatus.

PLANT PROFILE

Kingdom- Plantae Phylum- Embryophyta Class- Dicotyledoneae Order: Cucurbitales Family: Cucurbitaceae Genus: *Citrullus* Species: lanatus

Vernacular names: Watermelon (English), Tarbooz (Hindi), Tarbuj (marathi), Puccha (Telugu).

Edible Parts: Fruit, Leaves, Oil, Seeds.

Medicinal Uses:

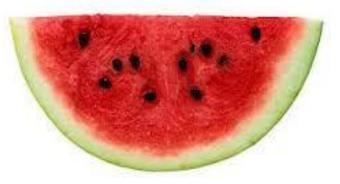
Seed is diuretic and tonic. used in the treatment of the urinary passages, a good vermifuge and has hypotensive action.

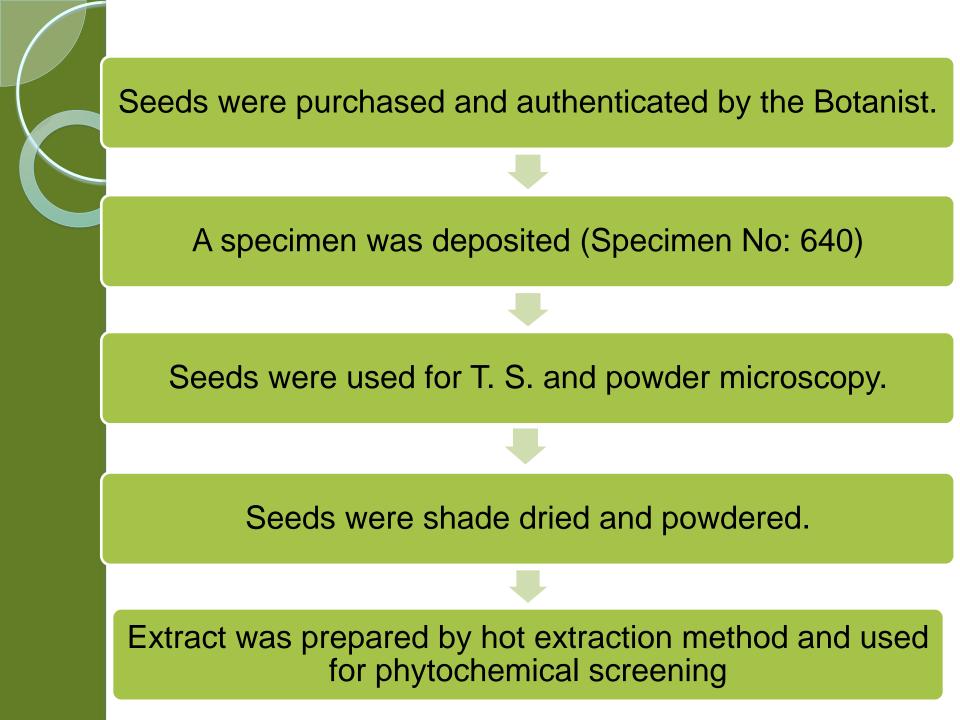
Fruit is used as a febrifuge, diuretic, effective in the treatment of dropsy and renal stones.

Rind of the fruit used in cases of alcoholic poisoning and diabetes.

Root is purgative, emetic (large doses).

The main objective of the present work is to evaluate pharmacognostic properties of seeds of *Citrullus lanatus* including:


- Macroscopy
- > Microscopy
- > Physicochemical parameters
- Flourescence analysis
- > Preliminary phytochemical screening



MATERIALS AND METHODS

Macroscopy

Seeds were evaluated for: Organoleptic Characters

- Colour
- Odour
- Taste

Quantitative Macromorphology

- Length
- Thickness

Extra Features

- Shape
- Texture
- Inner Surface
- Outer Surface

Microscopy

- The paraffin embedded seeds were sectioned (10 to 12 µm) with the help of Rotary Microtome.
- Dewaxing was done.
- Sections were stained with toluidine blue or saffranin, fast–green and IKI (for starch).
- Powder microscopy was carried out for the seed powder and specific diagnostic characters were recorded².

Total ash value

Acid insoluble ash value

Water soluble ash value

Moisture content

pН

Alcohol soluble Extractive

Water soluble Extractive

Fluorescence analysis

The fluorescence characters of the powdered seeds with different chemical reagents were studied by observing under day light and UV light.

Preliminary phytochemical studies

The prepared hydroalcoholic extract was subjected for preliminary phytochemical studies for identifying the presence of various phytoconstituents like alkaloids, glycosides, aminoacids, flavonoids, steroids, etc.³⁻⁴

Preliminary phytochemical screening

S.NO	Phytochemicals	Name of the test	
1.	Alkaloids	Dragendorff's test, Mayer's test	
2.	Amino acids	Ninhydrin test	
3.	Saponins	Froth test	
4.	Flavonoids	Shinoda test	
5.	Glycosides	Borntrager's test	
6.	Steroids	Liebermann Burchard test, Salkowski test	
7.	Tannins	Lead Acetate test	
8	Carbohydrates	Molisch's test	
9	Oils and fats	Filter paper test	
10	Proteins	Millon's test	
11	Phenolics	Ferric chloride test	

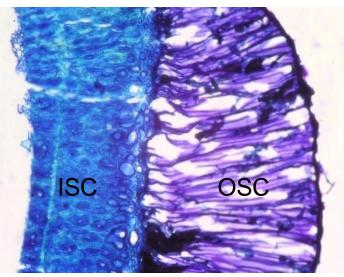
RESULTS

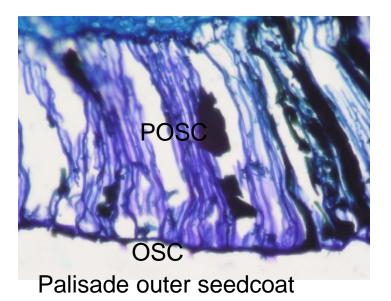
MACROSCOPY

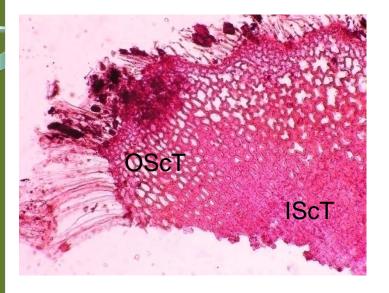
Organoleptic Characters

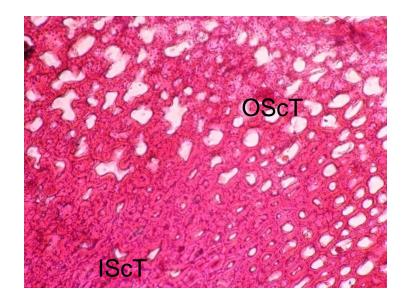
Colour: brown Odour: odourless Taste: mildly sweet **Quantitative Macromorphology** Length: 7x5x2mm Thickness: seed coat-550microns, cotyledons-40 microns **Extra Features** Shape: flattened, ovoid Texture: slippery to touch when moistened Inner Surface: yellowish white Outer Surface: vertical thin dark brown markings

MICROSCOPY



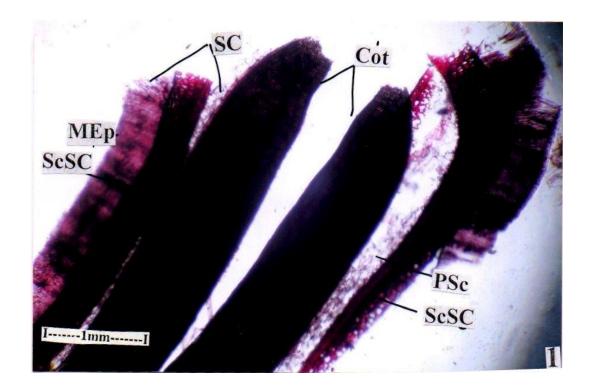

Surface of the seeds


Single seed enlarged

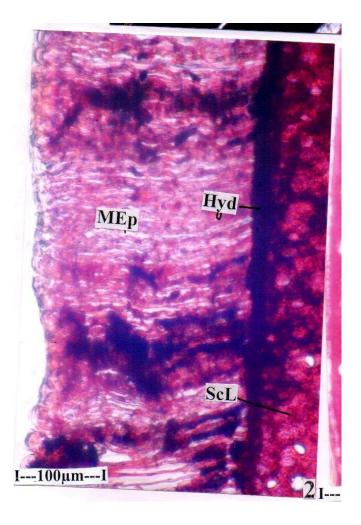


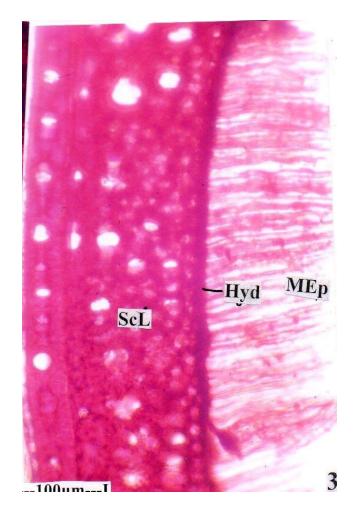
T. S.of seed coat

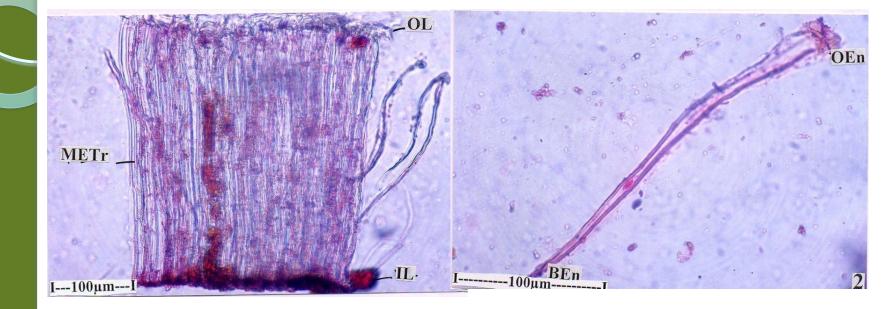
Structure of seed

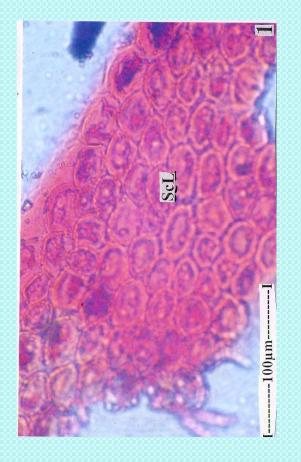


Sclerotesta showing two zones of sclereids

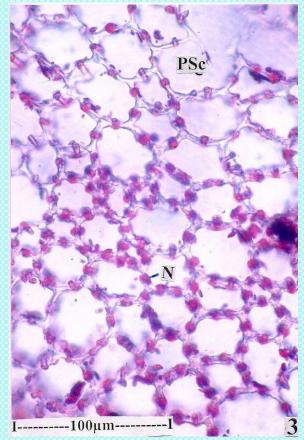

Sclerotesta-cells enlarged


POWDER MICROSCOPY


Fragment of the seed with two cotyledons with seed coat



Seed coat with mucilaginous hairy epidermis Seed coat with sclerenchymatous hypodermis and inner endodermal zone


Mucilaginous epidermis made up of long thin trichomes

Single epidermal trichome

Cells of the cotyledon

Innermost layer of parenchyma cells in sectional view

Physicochemical parameters

S. no	Parameters	Result
1.	Alcohol soluble extractive	7.2%
2.	Water soluble extractive	9.6 %
3.(a)	pH (for 1% solution)	6.5
(b)	pH (for 10% solution)	5.9
4.	Moisture content	11.3%
5.	Total ash content	7.25 %
6.	Acid insoluble ash (w/w %)	2.5%
7.	Water soluble ash (w/w %)	0.5%

Fluorescence Analysis

Powdered drug	Visible/day light	Ultraviolet light
Powder as such	brownish white	brownish white
Extract as such	Coffee brown	Greenish brown
Powder+ distilled water	brownish white	Yellowish white
Powder + ethanol	brownish white	Yellowish white
Powder+ conc. HCl	Light brown	black
Powder + picric acid	yellow	green
Powder+ aqueous NaOH	Yellowish white	Dark yellowish white
Powder+ aqueous KOH	Light yellow	yellow
Powder+ conc. H_2SO_4	Brick red	Blackish green
Powder + chloroform	Light brown	Light brown
Powder+ ammonia	Creamish yellow	yellow
Powder+ alcoholic KOH	brownish white	brownish white
Powder+ petroleum ether	Brownish white	Brownish white
Powder+ methanol	Brownish white	Brownish white

Preliminary Phytochemical (screening

S.NO	Phytochemicals	Result
1.	Alkaloids	negative
2.	Amino acids	positive
3.	Saponins	negative
4.	Flavonoids	positive
5.	Glycosides	positive
6.	Steroids	positive
7.	Tannins	Positive
8	Carbohydrates	positive
9	Oils and fats	positive
10	Proteins	negative
11	Phenolics	positive

DISCUSSION

Ash values are helpful to determine quality and purity of crude drug.

It indicates presence of various impurities like carbonate, oxalate and silicate.

The water soluble ash is used to estimate the amount of inorganic compound present in drugs.

The acid insoluble ash consists mainly silical and indicate contamination with material.

Moisture content of drugs should be at minimal level to discourage the growth of bacteria or fungi during storage.

Estimation of extractive values determines the amount of active constituents in a plant material when extracted with a particular solvent.

The extractions of any crude drug with a particular solvent yield a solution containing different phyto constituents.

It not only gives an indication whether the crude drug is exhausted or not but also valuable for the synthes complex chemical substances and to screen biolc activities.

The ultra violet light produces fluorescence in many natural products which do not visibly fluoresce in daylight.

If substances themselves are not fluorescent, they may often be converted into fluorescent derivatives or decomposition products by applying different reagents.

Hence crude drugs are often assessed qualitatively in this way and it is an important parameter for pharmacognostic evaluation of crude drugs.

CONCLUSION

The present study i.e., pharmacognostic and physicochemical studies of *Citrullus lanatus* is helpful in the characterization of the crude drug.

- Physiochemical and phyto-chemical analysis of seeds confirm the quality and purity of plant and its identification.
- The information collected is useful for further pharmacological and therapeutical evaluation of seeds of Citrullus lanatus.

REFERENCES

- World Health Organization. Quality control methods for medicinal plant materials, WHO Library, Geneva. 1998, pp.1-115.
- Harborne JB. Phytochemical methods—A guide to modern techniques of plant analysis.2nd Ed. London: Chapman and Hall;1984, p.9-15.
- Kokate CK, Khandelwal KR, Pawar AP, Gokhale SB. Practical Pharmaconosy 3rd edition, Nirali Prakashan Pune. 1995; pp:137.
- Esau K. Plant Anatomy. John Wiley and Sons, New York, 1964, 767. Easu K Anatomy of seed plants. John Wiley and sons Newyo Pg. no:.550.

Acknowledgement

I am thankful to DST-WOS-A [SR. WOS-A LS 425 2012(G)] for financially supporting my research work i.e., "Design and Evaluation of Polyherbal formulation for Nephroprotector activity".

