

Chronic obstructive pulmonary disease (COPD) complicating early-stage lung cancer (LC)

Ping Yang, M.D., Ph.D., Professor

Dept. Health Sciences Research Dept. Internal Medicine -Div. Pulmonary & Critical Care Medicine Dept. Medical Genetics Mayo Clinic

No Relevant Disclosures

Three Main Points

• Overview: link between COPD and LC

Prognosis of patients with COPD+LC

• Role of emphysema in LC outcome

Link between COPD and LC

Time-tested observations

Genomic and molecular mechanisms

Clinical implications

Mechanisms of association: COPD and LC Raviv et al., Am J Resp & Critical Care; 2011

Candidate mechanisms linking COPD to LC

Genetics:

- Process oxidant or noxious stress
- EPHX, CYPs, MPO and NRF2

Cell cycle regulation:

- Avoid apoptosis
- Uncontrolled proliferation

Cytokines:

- NF-κB activation
- Regulate tumour microenvironment

Inflammation:

- Field propagation
- Cytotoxic versus growth promoting

Proteinases:

- Matrix degradation
- Release growth factors

Nature Reviews | Cancer

Studies linking COPD & LC

Study FEV, (% predicted)[‡] Number of Outcome Emphysema participants Incidence Skilrud et al.4 226 Cancers in 8.8% of cases (FEV, NA <70%) versus 2.0% of controls (FEV, >85%); P=0.024 Tockman et al.⁵ • Cohort 1: RR 4.85 for FEV, <60% Mortality NA 4,395 versus >60%; P=0.002 Cohort 2: RR 2.72 for FEV 60-85% versus >85%; P=0.043Speizer et al.7 Quartile-based FEV, analysis 8,427 Mortality NA confers cancer risk (RR 2.0-8.27) Lange et al.6 13,946 Mortality • RR 2.1 (95% CI 1.3-3.4) for FEV. NA 40-79% versus >80% • RR 3.9 (95% CI 2.2-7.2) for FEV, <40% versus >80% de Torres et al.19 RR 2.89 (95% Cl 1.14-7.27) for 1,166 Incidence Semi-quantitative FEV,/FVC ratio <70% versus radiographic emphysema, RR >70% 3.13 (95% CI 1.32-7.44) Wilson et al.17 3,638 Incidence OR 2.09 (95% Cl 1.33-3.27) for any Semi-quantitative radiographic GOLD stage (FEV, /FVC <70%) emphysema, OR 3.56 (95% CI 2.21-5.73). After controlling for airflow obstruction, OR 3.14 (95% Cl 1.91-5.15) for radiographic emphysema Li et al.20 1.015 Incidence NA Semi-quantitative radiographic emphysema. Any = OR 2.79 (95% CI 2.05-3.81), >5% = 3.80 (95% CI 2.78–5.19), >10% = OR 3.33 (95% CI 2.30-4.82) Zulueta et al.21 Mortality NA Semi-quantitative 9,047 radiographic emphysema, HR 1.7 (95% CI 1.1-2.5); P=0.013 Maldanado et al.23 1,520 Incidence Cancer risk conferred by Automated volumetric decreasing FEV,, OR 1.15 (95% CI determination of radiographic 1.00-1.32; P=0.046); and FEV./ emphysema was not FVC <70%, OR 1.29 (95% CI associated with lung cancer 1.02 - 1.62; P = 0.0310)risk, OR 1.042 (95% Cl, 0.816 - 1.329; P = 0.743)

Houghton AM. Nature Rev Ca; 2013

CI, confidence interval; FEV_1 , forced expiratory volume in 1 second; FVC, forced vital capacity; GOLD, Global Initiative for Chronic Obstructive Lung Disease; HR, hazard ratio; NA, not applicable; OR, odds ratio; RR, relative risk. *All studies controlled for age and cigarette consumption. [‡]The FEV₁ is reported as the percentage that would be predicted for that individual based on parameters that are known to influence the FEV₁, such as gender, age, height and race.

Multiple-level validation identifies *PARK2* in the development of LC & COPD (Oncotarget 2016)

Table 1: Distribution of LC and COPD in 2484 cases and controls

	COPD +	COPD -	Total
LC +	n +/+ (573)	n +/- (612)	1185
LC –	n -/+ (537)	n –/– (762)	1299
Total	1110	1374	2484

Multiple-level validation identifies *PARK2* in the development of LC & COPD (Oncotarget 2016)

Multiple-level validation identifies *PARK2* in the development of LC & COPD (Oncotarget 2016)

Schematic model

COPD & LC: Clinical Implications

Prognosis of patients with COPD+LC

• Role of Emphysema on LC patients' survival

 Regional emphysema score: a predictor of outcomes in early-stage lung cancer

Prognosis of Patients with COPD+LC

Associations of concomitant COPD and LC survival

(Gao et al., Respirology 2016):

(a) Effect on disease-free survival (DFS)(b) Effect on overall survival (OS)

Effect on overall survival

•				Hazard Ratio		Hazar	d Ratio		
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV. Random, 95% C		IV. Rand	om, 95% Cl		
Arca JA, 2009	-0.12	0.06	8.2%	0.89 [0.79, 1.00]			1		
Birim O, 2006	0.2624	0.0378	9.7%	1.30 [1.21, 1.40]			-		
Dy SM, 2006	0.131	0.0388	9.6%	1.14 [1.06, 1.23]			*		
Gullón JA, 2011	0.1398	0.3379	0.9%	1.15 [0.59, 2.23]					
lachina M, 2014	0.1823	0.0447	9.3%	1.20 [1.10, 1.31]			*		
Jian ZH, 2015	0.1222	0.1574	3.3%	1.13 [0.83, 1.54]		-			
Kiri VA, 2010	0.2	0.03	10.1%	1.22 [1.15, 1.30]			-		
Kondo R, 2011	0.207	0.1482	3.6%	1.23 [0.92, 1.64]					
Kuo CH, 2014	0.6313	0.2281	1.8%	1.88 [1.20, 2.94]					
Kurishima K, 2001	0.347	0.157	3.3%	1.41 [1.04, 1.92]					
Lee SJ, 2014	0.0208	0.2468	1.6%	1.02 [0.63, 1.66]			<u> </u>		
López-Encuentra A, 2005	0.02	0.09	6.2%	1.02 [0.86, 1.22]		-	-		
Mina N, 2012	0.27	0.3358	0.9%	1.31 [0.68, 2.53]					
Sekine Y, 2002	0.3078	0.2521	1.6%	1.36 [0.83, 2.23]		-	<u> </u>		
Sekine Y, 2013	0.4121	0.2653	1.4%	1.51 [0.90, 2.54]		1			
Tammemagi CM, 2003	0.2019	0.083	6.6%	1.22 [1.04, 1.44]					
van de Schans SA, 2007	0.0392	0.0193	10.6%	1.04 [1.00, 1.08]			-		
Wang HM, 2013	0.131	0.0975	5.8%	1.14 [0.94, 1.38]			+		
Yamamoto S, 2013	-0.007	0.5605	0.4%	0.99 [0.33, 2.98]			1		
Zhai RH, 2014	0.3409	0.1116	5.0%	1.41 [1.13, 1.75]					
Total (95% CI)			100.0%	1.17 [1.10, 1.25]			•		
Heterogeneity: Tau ² = 0.01;	; Chi ² = 72.62, df = 19	(P < 0.0	0001); l ² =	74%		1		<u> </u>	
Test for overall effect: Z = 4	l.66 (P < 0.00001)				0.1 0.2	0.5 Non-COPD	COPD	5	10

Gao et al., Respirology 2016

The Role of Emphysema: OS vs. DFS

(a)		Hazard Ratio			Hazard Ratio					
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% Cl			IV, Rando	om, 95% Cl		
Bishawi M, 2013	0.3293	0.4302	9.4%	1.39 [0.60, 3.23]						
Gullón JA, 2011	0.4012	0.1515	31.7%	1.49 [1.11, 2.01]						
Kumagai S, 2014	0.8286	0.6715	4.4%	2.29 [0.61, 8.54]				-		_
Lee SA, 2010	0.2319	0.2663	18.7%	1.26 [0.75, 2.13]						
Mina N, 2012	0.3083	0.3041	15.7%	1.36 [0.75, 2.47]						
Ueda K, 2006	1.817	0.5341	6.6%	6.15 [2.16, 17.53]				<u> </u>		\rightarrow
Usui K, 2011	0.7709	0.3401	13.5%	2.16 [1.11, 4.21]					-	
Total (95% CI)			100.0%	1.66 [1.25, 2.22]				•		
Heterogeneity: Tau ² =	0.05; Chi ² = 8.82, df =	= 6 (P = 0	0.18); l ² =	32%	-				+	
Test for overall effect:	Z = 3.46 (P = 0.0005))			0.1	0.2 Non-ei	0.5 mphysema	1 2 Emphysema	5	10
(b)										
/				Hazard Ratio		Hazard Ratio				
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	8	IV, Random, 95% CI				
Kumagai S, 2014	0.4574	0.4355	50.5%	1.58 [0.67, 3.71]						
Ueda K, 2006	1.6329	0.4498	49.5%	5.12 [2.12, 12.36]						-
Total (95% CI)			100.0%	2.83 [0.89, 8.95]			-			_
Heterogeneity: Tau ² =	0.49; Chi ² = 3.53, df =	= 1 (P = (0.06); l ² =	72%	-				+	
Test for overall effect:	Z = 1.77 (P = 0.08)	2000 C • 110 - 200			0.1	Non-er	0.5 mphysema	Emphysema	5	10

Gao et al., Respirology 2016

Regional emphysema score: a predictor of outcomes in early-stage lung cancer

Jie Dai1,2, Ming Liu1,2, Stephen J. Swensen3, Shawn M. Stoddard2, Jason A. Wampfler4, Andrew H. Limper5, Gening Jiang1, Ping Yang2

1 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China;

2 Division of Epidemiology, Department of Health Sciences Research, 3 Department of Radiology,
4 Division of Biomedical Statistics and Informatics,
5 Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.

Study Population

Early stage lung cancer, having pre-treatment CT scan and regional emphysema score (n=1073)

Postoperative pulmonary function changes <2 years

- Classically, COPD subdivided into chronic bronchitis & emphysema
- Most commonly but not always, patients exhibit both

Three Take-home Messages

Mechanisms from COPD progressed to LC

• Prognosis of patients with COPD \pm LC

 Regional emphysema score: a predictor of outcomes in early-stage lung cancer