

Disregulation of Golgi localization of glycosyltransferases alters mucin O-glycosylation and survival or metastatic properties of cancer cells

Pi-Wan Cheng, Ph. D.

Mohamed Ali, Ph.D. and Armen Petrosyan, M.D.-Ph.D.

Department of Veterans Affairs Nebraska and Western Iowa Health Care System and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA

VA Merit Award 1I0 1BX000985: NIH R21 HL097238: Nebraska LB506

Outline

- Structures and functions of mucin O-glycans
- ☺ Factors that regulate glycan biosynthesis
- ☺ Golgi retention of glycosyltransferases
- ☺ Golgi targeting of glycosyltransferases
- ☺ Future study

Major Mucin Core Structures and synthesis of sLe^x on Core 2

Functions of Mucins

Secreted mucins: Protection of mucus secretory epithelium

- 1. Retain water
 - High carbohydrate content
- 2. Bind and clear inhaled and ingested pathogens Heterogeneous carbohydrate structure

Membrane-bound mucins: Signal transduction

- 1. Retain water: High carbohydrate content
- Guide migration of leukocytes/cancer cells: sLe^{a/x} and 6-sulfo-sLe^x

Membrane-bound mucins: Signal transduction

- 1. Retain water: High carbohydrate content
- 2. Guide migration of leukocytes/cancer cells:
 - sLe^{a/x} and 6-sulfo-sLe^x

Leukocyte Multistep Adhesion Cascade during Inflammatory Response (Von Andrian and Mackay, NEJM 343:1020, 2000)

Glycosyltransferase (β4GalT1)-catalyzed reaction

UDP-Gal + GlcNAc-R \rightarrow Gal β 1-4GlcNAc-R + UDP (sugar donor) (sugar acceptor)

Glycosyltransferase (β4GalT1)-catalyzed reaction

UDP-Gal + GlcNAc-R \rightarrow Gal β 1-4GlcNAc-R + UDP (sugar donor) (sugar acceptor)

Factors that regulate glycan biosynthesis

- 1. Substrate (Acceptor) specificity
- 2. Availability of sugar donor (Nucleotide-sugar)
- 3. Availability of sugar acceptor
- 4. Divalent ions and pH
- 5. Levels of enzymes
- 6. Golgi localization: Golgi targeting and retention

Golgi Targeting, Retention and Recycling of Glycosyltransferases

Golgi Targeting, Retention and Recycling of Glycosyltransferases

- <u>1a</u>. Petrosyan et al: Glycosyltransferase-specific Golgi
 targeting mechanisms. J Biol Chem 287:37621-7, 2012.
- **<u>1b/3d.</u>** Petrosyan et al: **Restoration of compact Golgi** morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. *Mol Cancer Res* 12:1704-16, **2014**.
- 2a. Ali et al: Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of C2GnT1. J Biol Chem 287:39564-7, 2012.
- 2b. Petrosyan et al: Keratin 1 plays a key role in Golgi
 localization of Core 2 N-acetylglucosaminyltransferase M
 via its cytoplasmic tail. J Biol Chem 290:6256-69, 2015.
- 3a. Petrosyan et al: Non-muscle myosin IIA transports a
 Golgi enzyme to the ER by binding to its cytoplasmic tail.
 Int J Biohem Cell Biol 44:1153-6, 2012.
- 3b. Petrosyan and Cheng: A non-enzymatic function of Golgi glycosyltransferases: mediation of Golgi fragmentation by interaction with non-muscle myosin IIA. Glycobiology 23:690-708, 2013.
- 3c. Petrosyan and Cheng: Golgi fragmentation induced by heat shock or inhibition of heat shock proteins is mediated by non-muscle myosin IIA via its interaction with glycosyl-transferases. Cell Stress & Chaperones. 19:241-54, 2014.

In vivo Glycosylation Scheme

Golgi phosphoprotein 3 (GOLPH 3) is identified as the C2GnT-1/L

Golgi-retention protein

Ali et al: J. Biol. Chem. 287:39564-7, 2012.

Knockdown of C2GnT1 or GOLPH3 in KG1a cells reduces their (I) tethering to and rolling on P or E-selectin and (II) adhesion to ICAM-1 (after activation by E-selectin) under dynamic flow

Ali et al: J. Biol. Chem. 287:39564-7, 2012.

GOLPH 3 regulates the metastatic potential of KG1a cells by controlling Golgi retention of C2GnT1/L

Ali et al: J. Biol. Chem. 287:39564-7, 2012.

Androgen-sensitive LNCaP cells but not androgen-refractory PC3 and DU145 cells generate Core 2-associated polylactosamine, which renders LNCaP cells susceptible to Galectin 1-induced apoptosis (Valenzuela et al. Cancer Res. 67:6155–62, 2007.)

Androgen-sensitive LNCaP prostate cancer cells have compact Golgi, androgen-refractory PC-3 and DU145 cells have fragmented Golgi, and C1GalT1 and ST3GalT1 are in the Golgi of these two cells but C2GnT-L is not

PC-3

DU145

Petrosyan et al: Mol. Cancer Res. 12:1704-16, 2014.

Prostatic tumors exhibit tumor progression-dependent Golgi fragmentation and outside-of-the-Golgi distribution of C2GnT-L

Petrosyan et al: Mol. Cancer Res. 12:1704-16, 2014.

C1GalT1 uses GRASP65-GM130/Giantin for Golgi targeting and C2GnT-M uses Giantin exclusively for Golgi targeting

Petrosyan et al: J. Biol. Chem. 287:37621-7, 2012.

What are the Golgi-targeting sites for ST3Gal 1 and C2GnT-1/L?

Petrosyan et al: J. Biol. Chem. 287:37621-7, 2012.

Petrosyan et al: Mol. Cancer Res. 12:1704-16, 2014.

In <u>LNCaP cells</u>, KD of Giantin+C2GnT-L but not Giantin, GM130, or GRASP65 prevents Golgi targeting of ST3Gal1, and KD of Giantin prevents Golgi targeting of C2GnT-L. In <u>PC3 and DU145 cells</u>, KD of GM130 prevents Golgi targeting of ST3Gal1

For Golgi targeting, C2GnT-M uses Giantin exclusively, ST3Gal1 uses Giantin and GM130-GRASP65, and C1GalT1 uses GM130-GRASP65/Giantin

Petrosyan et al: *J. Biol. Chem.* 287:37621-7, **2012**. Petrosyan et al: *Mol. Cancer Res.* 12:1704-16, **2014**.

Inhibition or KD of Non-muscle myosin IIA (NMIIA) in DU145 (also PC3) cells restores compact Golgi morphology (A & B) and Golgi targeting of C2GnT-L (B)

Petrosyan et al: Mol. Cancer Res. 12:1704-16, 2014 .

Inhibition (Blebb) or KD of NMIIA in DU145 (also PC3) cells converts mucin O-glycan from sialyI-T to Core 2-associated polylactosamine

Petrosyan et al: Mol. Cancer Res. 12:1704-16, 2014 .

Galectin-1 induces apoptosis in LNCaP cells but not PC3 (and DU145) cells unless NMIIA is inhibited or knocked down

Petrosyan et al: Mol. Cancer Res. 12:1704-16, 2014 .

Conclusions

- 1. The enzymatic function of a Golgi glycosyltransferase is regulated by its cognate retention protein.
- The enzymatic functions of C2GnTs are also regulated by giantin, the exclusive Golgi targeting site for these enzymes.

Future study

The effects of altered Golgi targeting of glycosyltransferases induced by stress, such as heat shock, alcohol abuse, caner malignant transformation etc, on N- and O-glycosylation