

Pour l'amour des enfants

Université de Montréal

Management of life threatening hyperammonemia in Children

> P Jouvet MD PhD Montreal

Conflicts of Interest

Link with companies:

- Consultant: Sage Therapeutics Inc
- Research funds: Air Liquide HC
- Invited speaker: Air Liquide HC

Covidien France Medunik Canada

Equipment:

Philips Medical, Hamilton Medical, Maquet Inc, Air Liquide HC

- Research salary and funds without company:
 - **FRQS**
 - MSSS
 - Sainte-Justine Hospital
 - **NSERC**
 - CIHR

Fonds de la recherche en santé

Québec 🕈 🕈

Santé et Services sociaux

- Definition
- Etiologies
- Therapeutic strategy
- Extra corporeal replacement therapy indications
- Conclusions
- Future

Objectives

- To known the etiologies of hypermmonemia
- To identify the medications to decrease ammonemia in acute onset
- To know the management of severe hyperammonemia

Hyperammonemia definition

• Reference values:

< 80 µmol/l (135 µg/dl) ; < 1 month < 55 µmol/l (95 µg/dl) ; > 1 month

• Linearity:

9 à 1000 µmol/1

Etiologies of hyperNH₃ in children

2000 to 2009 1 Pediatric Intensive Care

Etiology n (%)			
Liver failure	57 (63.3)		
Primary hepatic disease		38 (42.2)	
Biliary atresia			12 (13.3)
Congenital			
Hemochromatosis			1 (1.1)
Fructosemia			1 (1.1)
Galactosemia			1(1.1)
Cystic fibrosis			1(1.1)
Post-viral			5 (5.6)
Auto-immune			5 (5.6)
Toxic			
Acetaminophen			2 (2.2)
Chemotherapy			3 (3.3)
Tumoral			
Lymphoma			1 (1.1)
Hepatic tumor			1 (1.1)
Other			
VOD			3 (3.3)
Unknown			2 (2.2)
Secondary to MODS of extra-hepatic origin		19 (21.1)	
Urea cycle defect	21 (23.3)		
Primary urea cycle defect		9 (10)	
CPS defect			2 (2.2)
OTC defect			3 (2.2)
Arginase defect			1 (1.1)
ASL defect			1 (1.1)
ASS defect			1 (1.1)
NAGS defect			1 (1.1)
Other urea cycle inhibition		12 (13.3)	
Organic aciduria			
Methyl-malonic aciduria			2 (2.2)
Propionic aciduria			4 (4.4)
Glutaric aciduria			1 (1.1)
β-oxydation defect			2 (2.2)
Respiratory chain defect			3 (3.3)
Others	12 (13.3)		
Valproïc acid toxicity			4 (4.4)
Unknown			8 (8.9)

B Ozanne et al.J Hepatol 2012;56:123-8.

Hyper NH₃ mortality threshold

B Ozanne et al.J Hepatol 2012;56:123-8.

Cerebral edema mainly cytotoxic

HyperNH₃: *V Felipo et al. Prog Neurobiol 2002*

Hyperammonemia and Inborn Errors of Metabolism

Urea cycle disorders

Peak NH₃ < 480 µmol/L C Bachmann. Eur J Pediatr 2003

Coma duration < 33 hours S Picca et al. Pediatr Nephrol 2001

Reduction with dialysis F Schaeffer et al. NDT 1999

G Enns et al. NEJM 2007

14-year-old boy Normal development Intermittent headaches

Clinical case (1)

Headaches + visual blurred 48h later vomitting and anorexia

<u>96h later general practitioner consultation</u>:
Clinical examination normal
Hemoglobine : 16 g dl–1, leucocytes : 5.2.10⁹ /L, creatininemia : 70 μmol/L,
ASAT/ALAT: 22 UI/L normal

Emergency room at night: Obnubilated without neurological focal symptom Blood pressure 180/80, HR 75/min

14-year-old boy Normal development

- Protidemia: 78 g/L
- ASAT/ALAT normal range
- Cerebral TDM normal
- CSF: 1 cell/mm³, 250 Red Cell/mm³
- Toxics negative (amphetamines, cannabis, cocaïne, opioids, barbiturates, benzodiazepines, carboxyhemoglobine, alcohol, paracetamol)
- EEG non specific

14-year-old boy Normal development

Clinical case (3)

- Ammonemia of 344 mumol/L and it rapidly increased to 755 $\mu mol/L.$
- Death of one uncle after a coma in the year 1992 +++
- Diagnosis of hereditary ornithine transcarbamylase deficiency was confirmed later on by liver biopsy

Management of hyperNH₃ due to Inborn Errors of Metabolism

Initial management

Toxic production decrease

Toxic removal therapies

Initial management

Rehydration (goal: urine output of 2-4 ml/kg/hr)

Treatment of Intracranial hypertension: Mechanical ventilation, sedation, ... If deepening encephalopathy: Mannitol or NaCl 3-5% \longrightarrow Blood osmolarity \ge 300 mOsm/L

NB: In hyperammonemia, hyperventilation is not recommended as blood brain barrier seems to have a lower permeability to NH_4^+ than NH_3 JR Stabenau et al.J Clin Invest 1959.

Management of hyperNH₃ due to Inborn Errors of Metabolism

Initial management

Toxic production decrease

Toxic removal therapies

Toxic production decrease Nutritional support Promote protein anabolism **IV** Rehydration Caloric intake > 1500 Cal.m⁻².d⁻¹ IV switched to PO Carbohydrates (+/- Insuline) + lipids Infection treatment, no steroid

• Protein free nutrition

Management of hyperNH₃ due to inherited enzyme deiciciency

Initial management

Toxic production decrease

Toxic removal therapies

Medications for alternative pathway

Extra-corporeal removal therapies

Nitrogen scavenging medications

HyperNH₃ episodes and IV Sodium Benzoate

Episodes with $NH_3 > 100 \mu mol/l (n=69)$

Before i.v. sodium benzoate treatment At the end of i.v. sodium benzoate treatment

291 µmol/L [101 –2274]

41 µmol/L [13 –181]

No severe side effects were attributed to i.v. sodium benzoate

MC Husson et al. Orphanet Journal of Rare Diseases 2016;11:127

Nitrogen scavenging medications

Most of the NH₃ episodes are controlled with IV Sodium Benzoate

Other NH3 treatments provided at the end of treatment with i.v. sodium benzoate (Emergency regimen was performed in all cases)

Treatments	Episodes <i>N</i> = 95 (%)		
Missing	12 (12.6 %)		
Sodium benzoate p.o.	65 (78.3 %) ^a		
Sodium benzoate p.o. + Phenylbutyrate p.o.	3 (3.6 %) ^a		
Combination Sodium phenylacetate + Sodium benzoate (central i.v. infusion)	3 (3.6 %) ^a		
Combination Sodium phenylacetate + Sodium benzoate (central i.v. infusion) + Haemofiltration	3 (3.6 %) ^a		
Haemofiltration	2 (2.4 %) ^a		
Haemofiltration + Phenylbutyrate p.o.	1 (1.2 %) ^a		
Phenylbutyrate p.o.	1 (1.2 %) ^a		
^a Calculated as a percentage of the non-missing data			

MC Husson et al. Orphanet Journal of Rare Diseases 2016;11:127

Lanpher et al. Nature Reviews Genetics 7, 449-459.

Carglumic acid

Carglumic acid is an analog of N-acetylglutamate

Inborn errors of metabolism that can benefit of this treatment:

- Some urea cycle defects (N-acetylglutamate synthase deficiency, Carbamoyl-phosphate synthase I deficiency)
- Organic aciduria (propionic acidemia and methylmalonic acidemia, isovaleric acidemia),
- Other hyperammonemia with secondary inhibition of NAGS

Can avoid hemodialysis

M Daniotti et al. International Journal of General Medicine 2011;4:21

Extra	-corporeal toxic removal therapy in hyperNH ₃
Criteria:	Two of the three following criteria : coma, gastro-intestinal intolérance, $NH_3 > 300-400 \mu mol/L$
Modality:	Intermittent or continuous
Solute tran	sfer: Diffusion
Dialysis do	Se: \geq 35 ml/min/1.73 m ² in neonates and 50 ml/min/1.73 m ² in children Increase until dialysate flow = twice the blood flow (Schaefer F Nephrol Dial Transplant 1999)
Duration:	until NH ₃ in a normal range
Multidisci	plinary approach : genetics, intensivist, nephrologist, biochemist

Treatment of HyperNH₃ in Pediatric Intensive Care

Treatments implemented in order to lower plasma ammonia.

	All patients n = 90	Liver Failure n = 57	Primary or secondary Urea Cycle Defect n = 21
Inhibitors of intestinal production n (%)	31 (34.4)	29 (50.9)	2 (9.5)
Antibiotics	20	18	2
Disaccharides	20	20	0
NH ₃ scavengers n (%)	12 (13.3)	2 (3.5)	10 (47.6)
Sodium Benzoate	12	2	10
Phenyl acetate	11	2	9
Phenyl butyrate	0	0	0
Arginine	9	1	8
Carglumic acid	2	0	2
Citrullin	1	0	1
Renal replacement therapy n (%)	22 (24.4)	16 (28.1)	6 (28.6)
Continuous VenoVenous therapies	16	14	6
Peritoneal Dialysis	4	4	0
Intermittent Hemodialysis	2	2	0
Liver transplant n (%)	10 (11.1)	10 (17.5)	0 (0)
None n (%)	35 (38.9)	16 (17.8)	9 (10)

B Ozanne et al. J Hepatol 2012;56:123-8.

Management consequences

Initial NH ₃ Level (x2)* / clinical condition	Intensive care admission	Central line	Hemodialysis catheter
< 150 µmol/l (250 µg/dl) without encephalopathy	+/-	consider	-
150-300 (250 - 500 μg/dl) and/or encephalopathy	+	+ (jug or fem vein)	-
>300 (500 µg/dl)	+	+	+

Multidisciplinary approach : genetics, intensivist, nephrologist, biochemist

* Due to false positives risk, 2 NH₃ blood levels are required (B Maranda et al. Clin Biochem 2007;40:531)

Hypothermia?

Whitelaw A. Lancet 2001;358:36.

Differences in the management of HyperNH₃ due to liver failure

- Non-Absorbable Disaccharide (lactulose, ...)
- Neomycin, Metronidazole and other Antibiotics
- Rifaximin
- Probiotics
- Zinc
- L-Ornithine L-Aspartate
- Molecular Adsorbent Recirculating System (MARS)

May be inappropriate in acute liver failure.

W Bernal et al. N Engl J Med 2013;369:2525

No proof of efficacy

M Leise et al. Mayo Clin Proc 2014;89: 241 Z Poh et al. Intern J Hepatology 2012;2012,:1 A Merouani et al. PCCM 2014;15:681

• Occlusion of large portosystemic shunts

M Leise et al. Mayo Clin Proc 2014;89: 241

Liver transplantation Primary goal: To restaure all liver functions (synthesis, metabolic, ...) Urgent liver transplantation in acute liver failure Elective liver transplantation in some inborn errors of metabolism

Disease	Author	year	n	Survival (%)
UCD	D Morioka	2005	51	90
MMA	M Kashara	2006	18	83
PA	J Meyburg	2005	21	76
MSD	KA Strauss	2006	10	100

CONCLUSIONS

- Ammonia blood level in case of unexplained encephalopathy
- Hyperammonemia decreases with nitrogen scavenging medications, and carglumic acid can have a dramatic impact on some hyperammonemia
- Intensive care admission and hemodialysis are required in severe hyperammonemia

Future

Development of Enzyme therapies: Enzyme replacement therapy Hepatocyte transplantation Gene transfer

J Häberle et al. Orphanet Journal of Rare Diseases 2012;7:32.

