

Continuous Estimation of Glycosylated Hemoglobin (HbA1c) based on Self-monitoring Blood Glucose (SMBG) data and Laboratory HbA1c Measurements

Petteri Väisänen November 4, 2015

- Introduction to established biomarker, HbA1c
- Objectives
- Materials and Methods
- Results
- Discussion & Conclusions

Introduction

- Glycosylated hemoglobin (HbA1c, A1C, 'long-term sugar level') is the biomarker of glycemic control
- Diabetes related risks are heavily linked to the glycosylation of proteins in all parts of the body

DCCT (1983-1992) findings: Intensive blood glucose control reduces risk of

- eye disease by **76%**
- nerve disease by 60%
- kidney diseas by 50%

ttrofolia

EDIC findings (1993-2005): Intensive blood glucose control reduces risk of

- any cardiovascular disease by **42%**
- nonfatal heart attack, stroke, or death from cardiovascular causes by 57%

Relative Risk of Complications versus HbA1c: DCCT

Skyler, J.; 1996; Endocrinol Metab Clin North Am.; 25; 243-254

→HbA1c measured four times in a year?

Common case in Finnish health care: HbA1c measured only once a year!

Reseach case: HbA1c measured about once a month

A1c-Derived Average Glucose (ADAG) study 2006-2008

- Multicentered study included 507 subjects with Type 1 and Type 2 diabetes
- Design to determine the mathematical relationship between HbA1c and average blood glucose (AG)
- Subjects had 2 days of continuous glucose monitoring performed four times during the study period and seven-point self-monitoring of capillary glucose performed at least 3 days per week
- Linear regression for estimated HbA1c (eA1c):

eA1c(%) = 0.63*AG(mmol/L)+1.63

trofolia

Example from our study

- HbA1c laboratory measurements do not match with average of selfmonitored blood glucose (SMBG) values
- Blood glucose measurement habits are biased

Objectives

- Define individually adaptive Continuous A1c
- → Fills unmonitored gaps
- → Guide in day-to-day diabetes management

Materials and Methods

- 30 diabetics during 1 year period
- Individual's had their normal blood glucose measurement habits
 →No predifened measurement schedule
- In average subjects reported
 - 2.51 SMBG values per day
 - 4.17 Laboratory HbA1c measurements per year
- HbA1c change:
 - 2.50 %-units/month
 - +0.95 %-units/month
- Estimation algorithm utilizes a linear compination of multible statistical parameters such as mean, skewness, etc. in addition to laboratory HbA1c measurements

Materials and Methods

 Leave-one-out cross-validation was used to calculate mean absolute deviation (MAD) and mean absolute relative deviation (MARD)

- Error grid analysis:
 - Percentage of measurements within 10% error margin
 - Percentage of measurements within 20% error margin

Results: Example

• Method can estimate A1c with biased measurement habits

Results: Example 2

• Method can estimate A1c with good accuracy and utilizes the available data efficiently

Results: Error grid

Results: Error Grid

attrofolia

MAD and MARD were 0.41 and 5.38 %, respectively.

	Population based eA1c	Continuous A1c	Dynamic eA1c*
Correlation (R)	0.46	0.89	0.76
Within 10 %	51.26 %	87.25 %	77.50 %
Within 20 %	85.71 %	98.04 %	97.90 %

* Different data

Kovatchev, B. et al; 2014; Diabetes Technology & Therapeutics; 16:5; 303-309

Discussion & Conclusions

- HbA1c is the biomarker of glycemic control and it is measured 2-4 times in a year →Unmonitored gaps
- Here, a mathematical model was developed to estimate individual's HbA1c by using their routine SMBG and laboratory HbA1c measurements
- Algorithm needs reference HbA1c for calibration
- Sample size in the study was only 30 diabetics
- Results show that the method works with biased and irregular measurement patterns

Discussion & Conclusions

Continuous A1c...

utilizes routine monitoring data

fills unmonitored gaps

guides in day-to-day diabetes management

enables fast feed-back

increases reliability towards treatment

M

Thank You!

For more information: petteri@quattrofolia.com