"A new approach to the diagnosis of cervical, oesophageal and prostate cancer based on a combination of infrared and terahertz techniques."

Peter Weightman

Physics Department, University of Liverpool.

Towards disease diagnosis through spectrochemical imaging of tissue architecture.

- 1 To advance the understanding of oesophageal, cervical and prostate cancers through the application of IR, Raman and THz techniques.
- 2 To clarify the potential of IR, Raman and THz techniques for the characterisation of cancerous tissue since conventional approaches appear to have reached their limits.. Some studies of breast cancer.

Energy Recovery Linear Accelerator / ALICE

Tissue Culture Facility (cleared for research on cancerous tissue)

Potential of ALICE for cancer research 1 Infrared free electron laser and scanning near field microscope (SNOM) Diagnosis of extracted tissue 2 THz beamline and tissue culture facility Development of portable diagnostic instruments, A new therapy? http://www.youtube.com/watch?v=d7Lbyuqor8A

Terahertz radiation: Non ionising

Liverpool THz Beamline and TCF

THz Imaging: Medical Applications

A THz imaging system is being tested in Guys hospital to identify cancerous tissueExisting instruments are low power - μW to mW(ALICE 10 kW)Contrast mechanisms are not understood and diagnostic protocols crudeNeed for research combining spectroscopy and microscopy at kW

Does Malignancy have a THz signature? Research could lead to development of low cost portable diagnostic equipment Develop hand held THz probe to guide surgery.

Basal cell carcinoma (Teraview)

Multiple frequency comparison

visible

THz malignancy in red

Detector development with Carole Tucker (Cardiff) and Yaochun Shen (Liverpool)

THz Experiments in Cell Tissue Culture Facility

Does THz radiation have potential as a cancer therapy?

"Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in

human skin tissue." L. V. Titova et. al. Biomedical Optics Express 4 559-68 (2013)

"Intense THz down regulate genes associated with skin cancer and psoriasis: a new

therapeutic avenue?" L. V. Titova et. al. Nature Scientific Reports 3 : 2363 (2013)

THz beam

Stem cells in culture CO_2 IncubatorMicrobiological safety cabinetTissue culture facility with particulate free air conditioning.

Application of the

SNOM on the IR FEL

to the study of oesophageal cancer.

Spectroscopy and microscopy in the infrared

Strength: Spectral fingerprints of molecules

Weakness: Long wavelengths Diffraction limited spatial resolution ~ $\Box/2$ Solution: Near field optics ----> SNOM ---> needs high intensity Combine Spectroscopy and SNOM ---> needs very high intensity ---> IR FEL

Fourier transform infrared (FTIR) On laboratory instrument: spatial resolution ~ cms² On synchrotron, diffraction limited, spatial resolution $\sim 5 \ \mu m$ **Conclusions: Cancer characterised by:-DNA concentration ~ doubles and DNA spreads over larger areas Protein concentration reduces by ~ 6% High DNA : Glycoprotein ratio Current research** ALICE IR FEL+ SNOM spatial resolution ~ 0.1 µm

T.D. Wang et. al. PNAS 104 15864 (2007)

IR FEL + SNOM: Sub-cellular imaging of live cells

Scanning Near Field Microscopy (SNOM) in IR

Spatial resolution beats diffraction limit, □/2 Spectral resolution to locate distribution of proteins, lipids and DNA (IR signatures) Sub-cellular resolution of live cells

Combined spectral/spatial resolution Key is intensity of source

ResolutionSynchrotron (diffraction limited)10ImFree Electron Laser (FEL)0.1Im

Challenges slow, need good pulse to pulse stability

Eg. Detection of specific molecules in a cell

Generosi et al, J. App. Phys. 104 106102 (2008)

Imaging Processing: Pixel Intensity Comparisons

Preliminary analysis of the DNA: gylcoprotein ratio in cancerous (top image) and non-cancerous tissue (bottom image) Analysis Andy Wolski

Analysis of Images obtained at 8.05 µm and 7.3 µm : Spatial correlations?

Analysis of Images obtained at 8.05 µm: Areas of most intense contours

Oesophageal Adenocarcinoma: Subcellular characterisation

Near-field Optical Microscopy with an IR Free Electron Laser applied to Cancer Diagnosis. A.D. Smith et. al. Appl. Phys. Lett. **102** 053701 (2013)

Analysis of FTIR Imaging

of oesophageal cancer.

Oesophageal Adenocarcinoma: FTIR Spectral Imaging

Tim Craig and James Ingham

Oesophageal Adenocarcinoma: FTIR Spectral Imaging

Guided Cluster Analysis

No abnormal Tim Craig and James Ingham

Abnormal (red) Normal (green)

Visible image

Conclusions

1) Accelerator based sources of IR and THz have potential for cancer diagnosis.

Considerable more work needed on reproducibility and patient variability.

2) If successful need to develop cheap systems for use in hospitals.

£ 10m?

- 3) Maybe able to develop portable THz instruments for cancer diagnosis. Endoscopes?
- 4) Intense THz radiation as a cancer therapy???

Very controversial but makes sense theoretically.

Needs a lot more research. ALICE accelerator: tissue facility ideal environment.

Acknowledgements University of Liverpool.

- Prof. S. Chattopadhyay, Prof. A. Wolski, Dr S.D. Barrett, Dr. D.S. Martin, Dr M. S, King,
- Physics, Mr T. Craig, Mr J. Ingham, Physics.
- **Dr. Y Shen, Electrical Engineering and Electronics.**
- Prof. A. Cricenti and Dr. M. Luca, CNR (Rome).
- Prof. M. Pritchard, Gastroenterology, Royal Liverpool Hospital.
- Prof. A. Varro, Physiology, Royal Liverpool Hospital.

University of Lancaster.

- Dr. O.V. Kolosov, Physics, Prof. D. Allsop, Neuroscience.
- Prof. F.L. Martin, Biological Chemistry, Prof P.L Martin-Hirsch, Gynaeoncology and
- **Obstetrics, Lancashire Hospital, Dr H.F. Stringfellow, Pathology, Lancashire Hospital.** University of Manchester.
- **Prof. P. Gardener, Chemical Engineering and Analytical Science.**
- Prof. N. Clarke, Urological Oncology, Christie Hospital.

University of Cardiff.

Prof. P. Ade, Physics and Astronomy, Dr C. Tucker, Physics and Astronomy. Staff from ASTeC and Cockcroft Institute of Daresbury Laboratory.