DEVELOPMENT OF A CHLAMYDIAL VACCINE FOR KOALAS

Peter Timms et al.

Keratoconjunctivitis

Reproductive tract disease

"Current" taxonomy for Chlamydiae

Goal : To develop a vaccine to protect koalas against *C.pecorum* infection and disease

- Vaccine should result in;
 - Antibodies
 - Specific & high titres
 - Neutralising
 - Present at mucosal sites
 - T cell response
 - Lymphocyte proliferation
 - Cytokines (interferon-gamma)
 - Two types of vaccine
 - Prophalytic
 - Therapeutic

Basic vaccine formulation

- 1. Chlamydial antigen
 - **1. Recombinant MOMP proteins**
 - 2. Koala *C.pecorum* 3 genotypes
- 2. Adjuvant
 - 1. Iscomatrix; Tri-adjuvant (VIDO)
- 3. Delivery : subcutaneous
- 4. Assessment
 - 1. Swab eyes and UGT and measure infection (qPCR) load
 - 2. Clinical disease

The "10-year" project

- 1. Can koalas produce an immune response to chlamydial antigens \checkmark
- 2. Is the vaccine safe to give to animals with current infection / disease \checkmark
- 3. Can a vaccine do something that natural infection is currently not doing √
- 4. Is there cross-strain immune recognition $\sqrt{2}$
- 5. Vaccination of male as well as female koalas \checkmark
- 6. Move from a multi-dose to a single dose vaccine \checkmark
- 7. Develop new koala immunological reagents \checkmark
- 8. Evaluate the vaccine under field conditions
- 9. What is the basis of protection
- 10. Can you vaccinate against disease

Production of *in vitro* neutralising antibodies following vaccination

Production of a T cell response

The "10-year" project

- 1. Can koalas produce an immune response to chlamydial antigens \checkmark
- 2. Is the vaccine safe to give to animals with current infection / disease \checkmark
- 3. Can a vaccine do something that natural infection is currently not doing \checkmark
- 4. Is there cross-strain immune recognition $\sqrt{2}$
- 5. Vaccination of male as well as female koalas \checkmark
- 6. Move from a multi-dose to a single dose vaccine \checkmark
- 7. Develop new koala immunological reagents \checkmark
- 8. Evaluate the vaccine under field conditions
- 9. What is the basis of protection
- **10.** Can you vaccinate against disease

First major field trial

- 60 free-ranging koalas; 30 Vaccine & 30 Control
- Vaccine
 - <u>Antigen</u>: Major Outer Membrane Protein (MOMP)
 - <u>Adjuvant</u>: Immune Stimulating Complex (ISC)
 - Immunisation Schedule : Days 0, 30 and 60
- Analysis
 - IgG antibody production; Cytokine production
 - Chlamydia infection load as determined by qPCR
 - Incidence of new disease

S1 Mdn of 39 [IQR = 20.3 – 76.4] S2 *Mdn* 119.6 [IQR = 10.6 – 204.1] Wilcoxin signed rank test *z* = -1.572, *p* = 0.116, *r* = 0.45

Wilcoxin signed rank test z = -2.310, p = 0.021, r = 0.54

Wilcoxin signed rank test z = -1.572, p = 0.116, r = 0.45

The "10-year" project

- 1. Can koalas produce an immune response to chlamydial antigens \checkmark
- 2. Is the vaccine safe to give to animals with current infection / disease \checkmark
- 3. Can a vaccine do something that natural infection is currently not doing \checkmark
- 4. Is there cross-strain immune recognition $\sqrt{2}$
- 5. Vaccination of male as well as female koalas \checkmark
- 6. Move from a multi-dose to a single dose vaccine \checkmark
- 7. Develop new koala immunological reagents \checkmark
- 8. Evaluate the vaccine under field conditions
- 9. What is the basis of protection
- 10. Can you vaccinate against disease

In vitro neutralisation antibody levels

Mapping of the MOMP epitopes : PepScan technology

Absorption of sera against peptides and evaluation of remaining *in vitro* neutralisation ability

D

Acknowledgements

Partners

- University of Sunshine Coast
- Queensland Univ Technology
- Gold Coast City Council
- Moreton Bay Regional Council
- DEHP
- DTMR; MBRL team
- Lone Pine Koala Sanctuary
- Friends of the Koala
- VIDO, Canada
- Endeavour Veterinary Ecology
- Australia Zoo Wildlife Hospital
- Koala Action Inc.
- Redland City Council

Key people

- P Timms
- K Beagley
- A Polkinghorne
- C Waugh
- M Mathew
- S A Khan
- P Kanyoka
- A Kollipara
- S Nyari
- M Descoleux
- C Mangar

Australian Government

Australian Research Council

Queensland Government

Department of Main Roads

Endeavour Veterinary Ecolo