

Clean technology for a thriving planet

Alkali-Activated Concrete from Plasmarok[®]

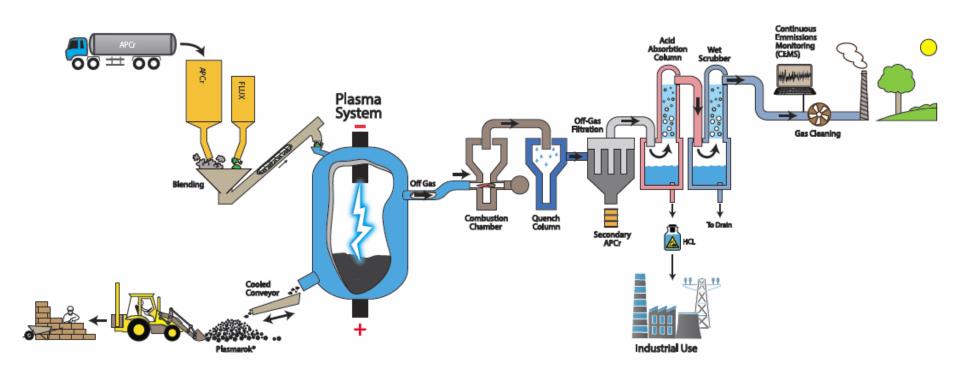
Peter Keeley^{1,2}, Neil Rowson² ¹Tetronics International, ²University of Birmingham

World Recycling Congress, Berlin 2016

27th July 2016

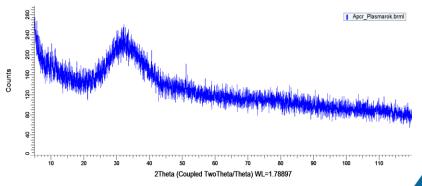
Air Pollution Control Residue (APCr)

- Mixture of fly ash, organic pollutants, carbon and alkaline salts produced during gaseous emissions cleaning from incineration activities.
- ✓ The UK is approaching the production of 500,000 tonnes of APCr per year.
- Thermal plasma can be used to transform the APCr into a non-hazardous material know as Plasmarok[®] via a vitrification process.
- ✓ Plasmarok[®] can be re-used as an aggregate in construction applications but Tetronics have currently been researching its application as a cement replacement.



2

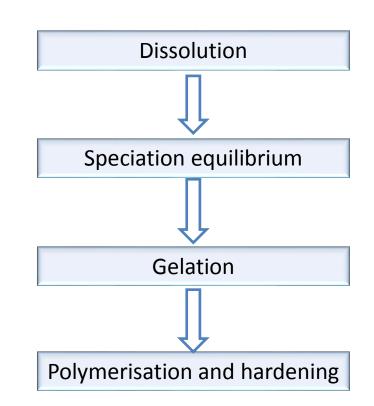
The Plasma Vitrification Process



Cement Replacements

- Fly ashes, calcined clays, volcanic ashes and blast furnace slags are examples of successful commercial cement replacement materials.
- Materials with high SiO₂ and Al₂O₃ content, glassy phases and small particle sizes are good cement replacements.
- Alkali-activated concretes derived from Plasmarok can have very high compressive strengths (90 Mpa)
- Alkali-activated concretes require the material to be \mathbf{M} mixed with an alkaline solution such as NaOH to initiate their production.

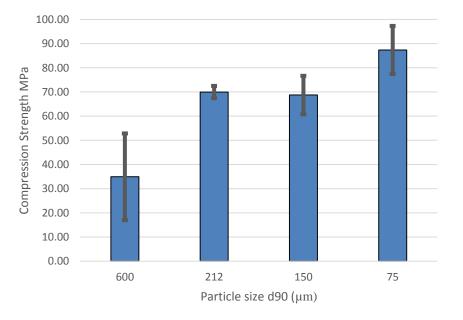
Oxide	wt%
Al ₂ O ₃	16
SiO ₂	39
CaO	35
Fe ₂ O ₃	4
MgO	1.3
TiO ₂	1.3
P_2O_5	0.7
Na ₂ O	0.2



Factors effecting the material properties

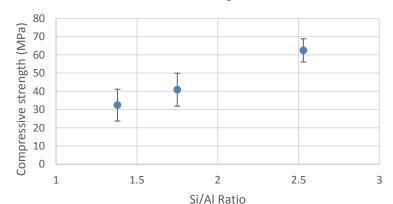
- ✓ There a number of stages which occur as alkali-activated concretes are produced. These stages are affected by:
 - Y Particle size of the Plasmarok.
 - ✓ Chemical composition of the formulation.
 - Ƴ Mix design.

Y Processing route.

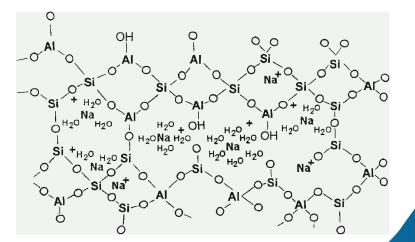


Particle size

- ✓ The particle size distribution of the Plasmarok has a significant effect on the strength of the concrete.
- ✓ As the particle size is reduced the strength of the final alkali activated concrete is increased.
- ✓ Reducing the particle size increase the available surface area for the dissolution of the species from the Plasmarok into solution.
- ✓ As more species can dissolve into the solution, the stronger the material can become.



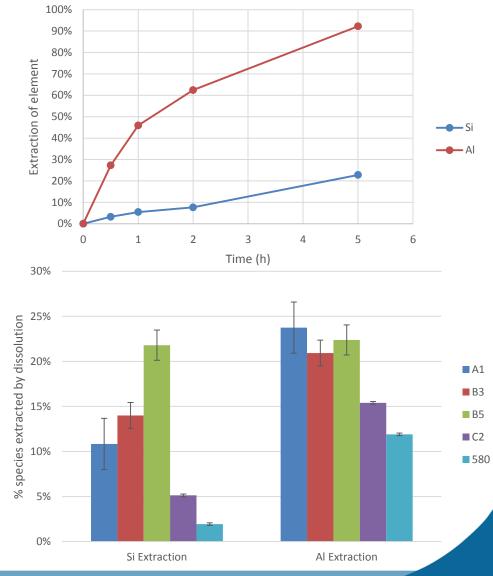
6



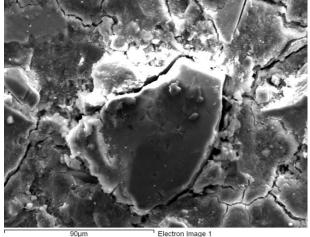
$SiO_2 - AI_2O_3$ Ratio

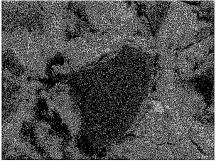
- ✓ Increasing the Si/Al ratio in the formulation can increase the compressive strength of the alkali-activated concrete.
- ✓ The species form alumino-silicate chains during polymerisation, but the Si-O bond is much stronger than the Al-O bond.
- Y The more Al in these chains the weaker they would be.
- Aluminium ions are more readily dissolved from the Plasmarok in alkaline environments than silicon ions.

6 M NaOH Activating Solution

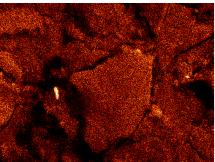


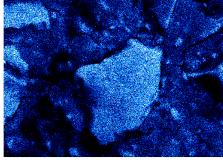
'Clean technology for a thriving planet'

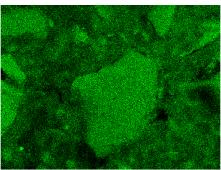

Oxide	A1	B3	B5	C2	580
SiO ₂	34	35	30	40	42
Al ₂ O ₃	17	22	25	16	10
CaO	36	36	36	36	40
Na ₂ O	5	0.3	1.2	0.7	0.2
Fe ₂ O ₃	2.6	1.7	1.5	2.3	1.2
MgO	1.4	1.5	1.4	2.1	1.4
TiO ₂	1.1	1.2	1.2	1.4	1.1


Clean technology for a thriving planet

Electron Image 1

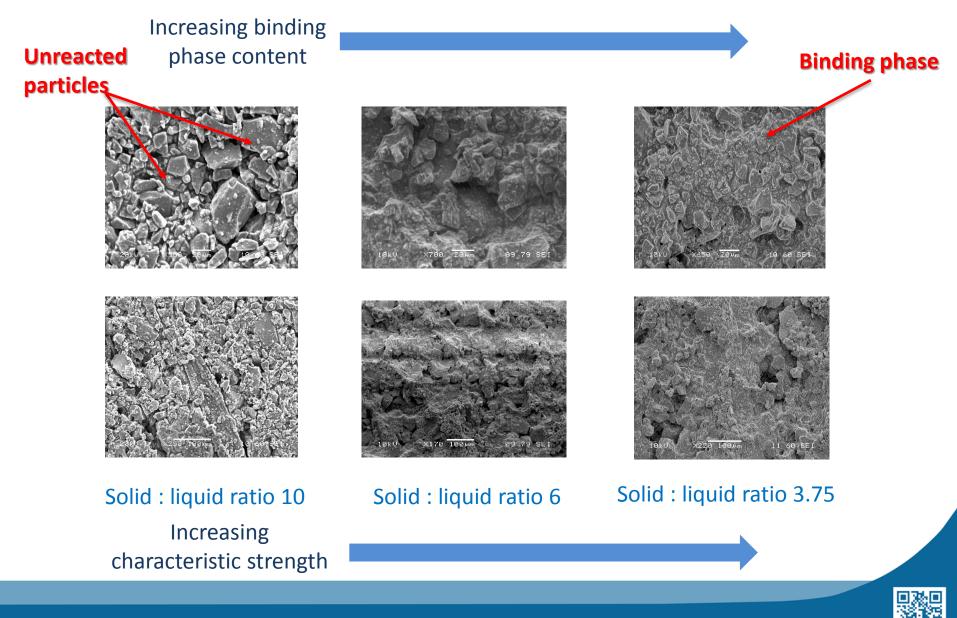

The binding phase is composed of sodium, aluminium, silicon and calcium oxides and so can be represented as a C-(N)-A-S-H binding phase.


The binding phase is at first amorphous but gradually develops a semi-crystalline structure over time.


Na Ka1 2

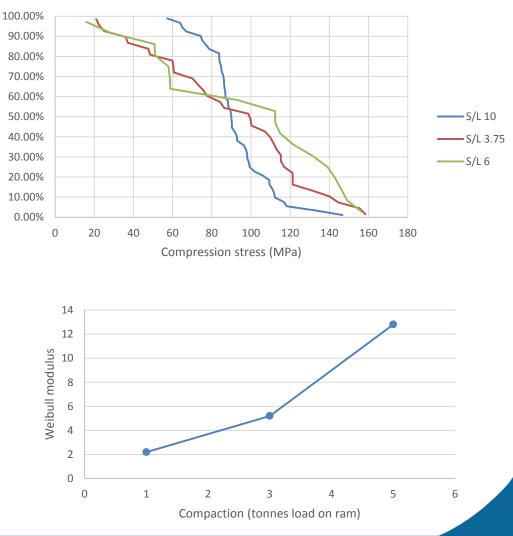
Counts

Al Ka1



Si Ka1 Ca Ka1 6 months 3 months month

2Theta (Coupled TwoTheta/Theta) WL=1.78897



Process Route

Y The strength of the material can be variable.

Probability of Survial

- Y Compaction of the mixture in the mould reduces the variability of the strength of the material.
- Y The compaction of the raw materials reduces residual stress in the final material derived from large pores.

11

© Tetronics International 2016

'Clean technology for a thriving planet'

Summary

- ➤ Hazardous wastes such as air pollution control residue can be transformed into a non-hazardous glass via plasma technology
- The non-hazardous glass can be recycled as a cement replacement and used to make high strength alkali-activated concretes.
- ✓ The properties of the alkali-activated concretes are dependant on a number of factors including intrinsic properties of the material and extrinsic influences such as the processing route or mix design.
- ✓ Understanding the influences of these factors helps us to be able to develop consistent materials which desirable properties.

Clean technology for a thriving planet

Acknowledgments and thanks:

Dr. David Deegan and Dr. Tim Johnson – Tetronics International

Professor Neil Rowson and Dr. Richard Greenwood – University of Birmingham

Engineering and Physical Science Research Council (EPRSC)

Marston Gate South Marston Park Stirling Road Swindon, SN3 4DE

Thank you

Tel : +44 (0)1793 238500

UNIVERSITY^{OF} BIRMINGHAM

