
About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

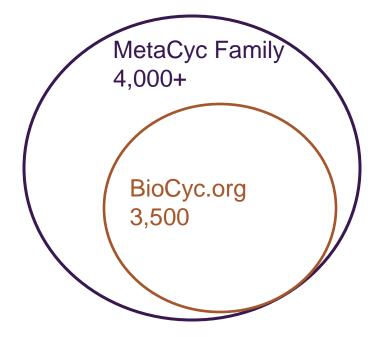
OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Analyzing Metabolomics Data with SmartTables

Peter D. Karp SRI International

Overview


- Overview of MetaCyc family of Pathway/Genome Databases (PGDBs)
- Overview of Pathway Tools software
- SmartTables

MetaCyc Family of Pathway/Genome Databases

- 4,000+ databases from many institutions
- All domains of life with microbial emphasis
- Genomes plus predicted metabolic pathways
- DBs derived from MetaCyc via computational pathway prediction
- Common schema
- Common controlled vocabularies
- Managed using Pathway Tools software

Archives of Toxicology 85:1015 2011

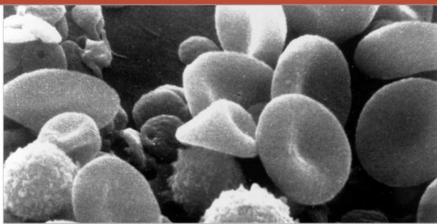
Curated Databases Within the MetaCyc Family

Database	Organism	Organization	Publications Curated From
MetaCyc	Multiorganism	SRI	35,000
ЕсоСус	E. coli	SRI	25,000
HumanCyc	H. sapiens	SRI	
AraCyc	A. thaliana	TAIR/Carnegie Institution	2,282
YeastCyc	S. cerevisiae	SGD/Stanford/SRI	565
MouseCyc	M. musculus	MGD/Jackson Laboratory	

http://biocyc.org/otherpgdbs.shtml

HumanCyc: Encyclopedia of *Homo* sapiens Genes and Metabolism

HumanCyc is a multi-functional database:


- It provides an encyclopedic reference on human metabolic pathways
- It provides a computer-queryable database of human metabolic pathways
- It provides a zoomable human metabolic map diagram
- It has been used to generate a steady-state quantitative model of human metabolism

Getting Started

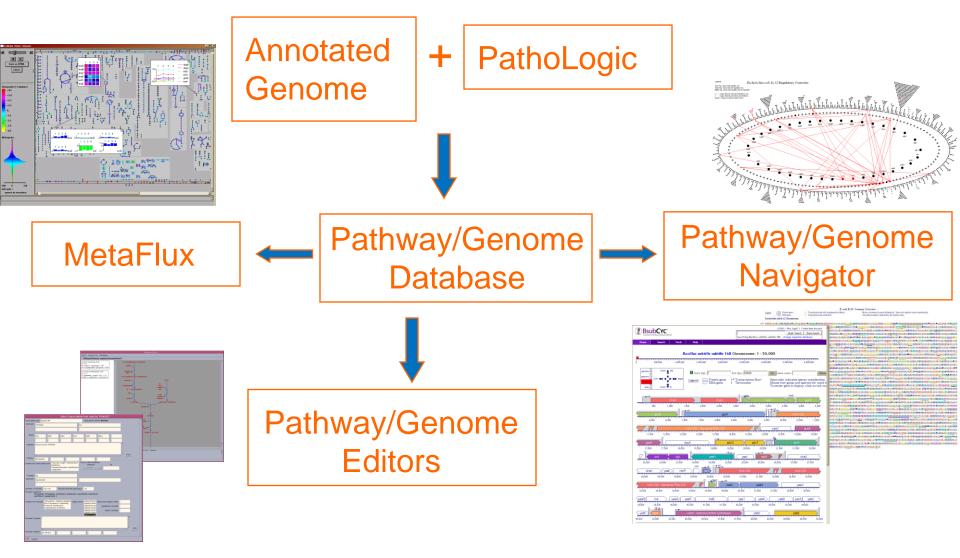
New to HumanCyc? Typical usage includes:

- Analyze human metabolomics and gene-expression data
- Search for a gene or pathway using the Quick Search, or use the Search menu for more options

For more information on HumanCvc, see our article "Computational

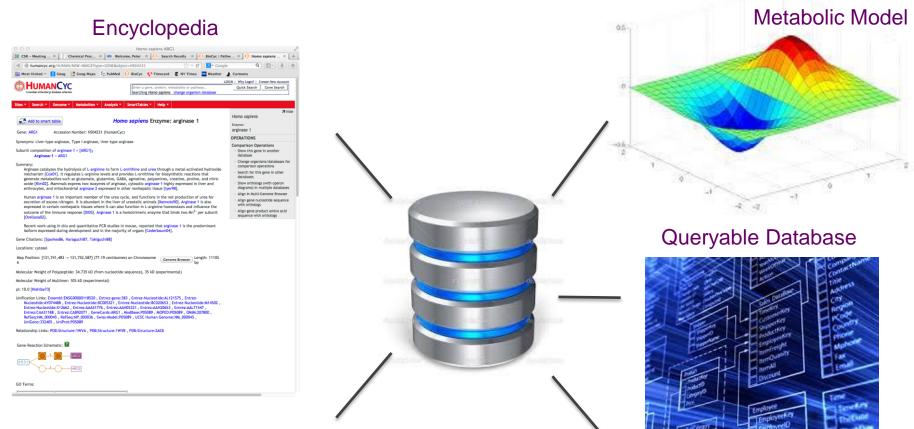
put in the public domain by NCI/Donald BlissBruce Wetzel and Harry Schaefer.

2 3 4 5 6 7 8

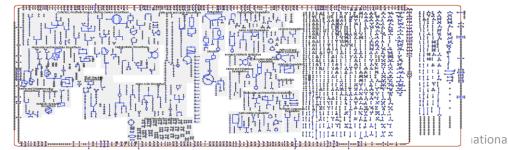

Heme, Not Just the Red Pigment in Blood.

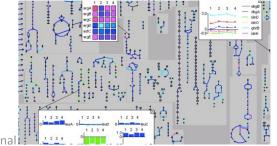
Heme, an iron-containing porphyrin, functions as a prosthetic group in numerous proteins. These range from components of the electron transport chain to many enzymes. No wonder the biosynthesis of *heme* is highly conserved in evolution!

Learn More


- Human pathways predicted from the human genome in 2004
 - Romero *et al, Genome Biology* 6(1):1-17 2004
- 295 pathways, 2600 reactions, 1700 metabolites
- Extensive query and visualization tools linking genome to metabolome
- HumanCyc.org

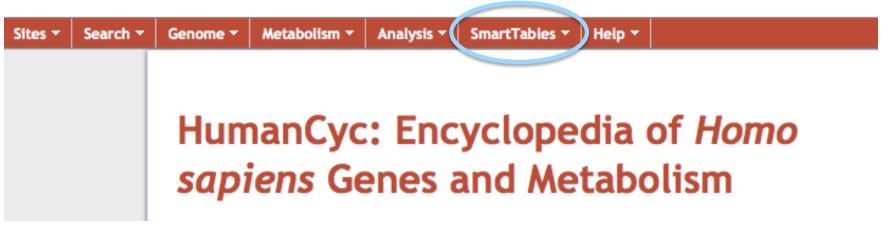
Pathway Tools Software




Briefings in Bioinformatics 11:40-79 2010

Pathway Tools Enables Multi-Use Metabolic Databases

Zoomable Metabolic Map


Omics Data Analysis

SmartTables (formerly Web Groups)

- Collect lists of database objects
 - Genes, metabolites, pathways, sequence regions, ...
- Transform them into related objects
 (eg: transform list of genes → list of pathways)
- Filter and combine
- Share with public or specific collaborators
- Export to spreadsheet
- Omics analyses

Accessing SmartTables

- BioCyc.org, HumanCyc.org, EcoCyc.org...
- To create saved SmartTables, create a (free) BioCyc account for yourself
- From the web menu:
- SmartTables->My SmartTables

Creating SmartTables: User-Defined SmartTables

- Create a SmartTable
 - Type in metabolite names
 - From search results
 - Upload a tab-delimited text file

🔲 1	a 2-(2-hydroxyacyl)sphingosine
2	3-hydroxyanthranilate
3	acetoacetate
4	3-mercaptopyruvate
5	3-oxo-cholyl-CoA
6	3-phospho-hydroxypyruvate
7	3-pyridylacetate
8	5-amino-1-(5-phospho-B-D-ribosyl)imidazole
9	(5Z)-(15S)-11-α-hydroxy-9,15-dioxoprosta-13-enoate
0 10	prostaglandin E ₂
🔲 11	acetol
🗌 12	B-D-galactosyl-1,3-(N-acetyl-B-D-glucosaminyl-1,6)-N-acetyl-D-galactosaminyl-R
🗌 13	betaine aldehyde
0 14	citrate

s 🔻	Search 🔻	Genome 🔻	Metabolism 🔻	Analysis 🔻	SmartTables 🔻	Help 🔻			
	SmartTables directory SmartTables Help SmartTable: Human Metabolomics Synthetic								
66	Click to add description 66 rows of compounds from H. sapiens Owner: Peter Karp, Created: 25-Mar-2014 10:14:02								
	ADD TRA	NSFORM COLUM		ADD	PROPERTY COLUM		ENRICHME		
	choose	a transform	÷ 🕐	D	atabase Links	÷	choose	an enrichment 💠	2
S	how paged	Show all							
	- (column 1) 🛃				÷ ChEBI →		★ KEGG ★ KEGG ★ ★
	🗆 1 🎖	-hydroxyanthr	anilate				36559		C00632
	🗆 2 🏻 a	cetoacetate					13705		C00164
	□ 3 ³	-mercaptopyru	uvate				57678		C00957
	<u>4</u>	-oxo-cholyl-Co	A						
	□ 5	-phospho-hydr	oxypyruvate				18110		C03232
	6 3	-pyridylacetat	e						
	o 7 ⁵	-amino-1-(5-pl	hospho-B-D-ribos	yl)imidazole			2655		C03373
	(1	T) (1EC) 11 a	hudroux 0.1E di	avaprata 12	onosto		57400		C04707

¢,	column 1 🖂		♣ Monoisotopic-Molecular-Weight ◀
3-hy	ydroxyanthranilate	152.129	153.04259
ace	toacetate	101.082	102.03169
3-m	nercaptopyruvate	119.115	119.98811
3-0	xo-cholyl-CoA	1152.048	1155.3766
3-pl	hospho-hydroxypyruvate	181.018	183.9773
3-p;	yridylacetate	136.13	137.04768
5-ar	mino-1-(5-phospho-B-D-ribosyl)imidazole	294.18	295.05695
(5Z))-(15S)-11-α-hydroxy-9,15-dioxoprosta-13-enoate	349.446	350.20932
pros	staglandin E ₂	351.462	352.22498
) ace	tol	74.079	74.03678
beta	aine aldehyde	102.156	102.09189
2 citra	ate	189.101	192.02701
3 nico	otine-1'-N-oxide	178.233	178.11061
f glut	tarate semialdehyde	115.108	116.04734
i tran	ns-1,2-dihydrobenzene-1,2-diol	112.128	112.05243
5 D-gl	luconate 6-phosphate	273.113	276.02463

	Column 1	SMILES	Structure of compound ∢
□ 1	3-hydroxyanthranilate	C1(C=C(C(N)=C(O)C=1)C([O-])=O)	NH2 OH
2	acetoacetate	CC(=0)CC([0-])=0	
3	3-mercaptopyruvate	C(C(C(=O)[O-])=O)S	HS O

Show pag	how paged Show all					
-	column 1 ←	♣ Mechanism	⊕ Regulates			
🔲 1	3-hydroxyanthranilate					
2	acetoacetate	COMPETITIVE	Regulation of acetyl-coA synthetase by acetoacetate			
3	3-mercaptopyruvate					
4	3-oxo-cholyl-CoA					
5	3-phospho-hydroxypyruvate					
6	3-pyridylacetate					
7	5-amino-1-(5-phospho-B-D-ribosyl)imidazole					
8	$(5Z)-(15S)-11-\alpha-hydroxy-9,15-dioxoprosta-13-enoate$					
9	prostaglandin E2					
🗌 10	acetol					
🔲 11	betaine aldehyde					
🗌 12	citrate					
🗌 13	nicotine-1'-N-oxide					
🗌 14	glutarate semialdehyde	ALLOSTERIC	Regulation of succinate semialdehyde dehydrogenase by glutarate semialdehyde			
🗌 15	trans-1,2-dihydrobenzene-1,2-diol					

SmartTable Transformations

• Create new columns that are computed from existing columns

Transformations: Reactions and Pathways of Metabolite

Patł	ADD TRANSFORM COLUMN ADD PROPERTY COLUMN ENRICHMENTS Pathways of compound Choose a property Choose an enrichment		
how pa	column 1 ◀		Pathways of compound
1	3-hydroxyanthranilate	3-hydroxyanthranilate + oxygen \rightarrow aminocarboxymuconate semialdehyde + H ⁺ 3-hydroxy-L-kynurenine + H ₂ O \rightarrow 3-hydroxyanthranilate + L-alanine + H ⁺	L-kynurenine degradation tryptophan degradation to 2-amino- 3-carboxymuconate semialdehyde
2	acetoacetate	succinyl-CoA + acetoacetate \rightarrow succinate + acetoacetyl-CoA acetoacetate + ATP + coenzyme A \rightarrow acetoacetyl-CoA + AMP + diphosphate acetoacetate + H ⁺ \rightarrow acetone + CO ₂ acetoacetate[extracellular space] + H ⁺ [extracellular space] \rightarrow acetoacetate[cytosol] + H ⁺ [cytosol] (S)-3-hydroxybutanoate + 2-oxoglutarate = (R)-2-hydroxyglutarate + acetoacetate 4-fumaryl-acetoacetate + H ₂ O \rightarrow fumarate + acetoacetate + H ⁺ (R)-3-hydroxybutanoate + NAD ⁺ \leftrightarrow acetoacetate + NADH + H ⁺ (S)-3-hydroxy-3-methylglutaryl-CoA \rightarrow acetoacetate + acetyl-CoA	leucine degradation I tyrosine degradation ketogenesis acetone degradation I (to methylglyoxal) ketolysis
3	3-mercaptopyruvate	hydrogen cyanide + 3-mercaptopyruvate \rightarrow pyruvate + thiocyanate + H [*] 2-oxoglutarate + L-cysteine \rightarrow L-glutamate + 3-mercaptopyruvate	L-cysteine degradation II
94	3-oxo-cholyl-CoA	NAD(P)* + choloyl-CoA = NAD(P)H + 3-oxo-cholyl-CoA + H*	
5	3-phospho-hydroxypyruvate	3-phospho-D-glycerate + NAD ⁺ \rightarrow 3-phospho-hydroxypyruvate + NADH + H ⁺ 3-phospho-L-serine + 2-oxoglutarate \leftarrow 3-phospho-hydroxypyruvate + L-glutamate	serine biosynthesis (phosphorylated route)
6	3-pyridylacetate	4-(3-pyridyl)-butanoate \rightarrow 3-pyridylacetate	nicotine degradation IV nicotine degradation III
7	5-amino-1-(5-phospho- B-D-ribosyl)imidazole	ATP + 2-(formamido)-N ¹ -(5-phospho-8-D-ribosyl)acetamidine \rightarrow ADP + 5-amino-1-(5-phospho-8-D-ribosyl)imidazole + phosphate + H ⁺ 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + 2 H ⁺ \leftarrow 5-amino-1-(5-phospho-8-D-ribosyl)imidazole + CO ₂	inosine-5'-phosphate biosynthesis 5-aminoimidazole ribonucleotide biosynthesis

Transformations: Genes of Pathway

Show paged Show all

	çolumn 1 €		Pathways of compound	Genes of pathway ∢
□ 1	3-hydroxyanthranilate	3-hydroxyanthranilate + oxygen \rightarrow aminocarboxymuconate semialdehyde + H ⁺ 3-hydroxy-L-kynurenine + H ₂ O \rightarrow 3-hydroxyanthranilate + L-alanine + H ⁺	L-kynurenine degradation tryptophan degradation to 2-amino- 3-carboxymuconate semialdehyde	ACMSD DHTKD1 CCBL1 GOT2 CCBL2 AADAT AFMID KMO KYNU HAAO IDO1 IDO2 TDO2
□ 2	acetoacetate	succinyl-CoA + acetoacetate \rightarrow succinate + acetoacetyl-CoA acetoacetate + ATP + coenzyme A \rightarrow acetoacetyl-CoA + AMP + diphosphate acetoacetate + H ⁺ \rightarrow acetone + CO ₂ acetoacetate[extracellular space] \rightarrow H ⁺ [extracellular space] \rightarrow acetoacetate[cytosol] + H ⁺ [cytosol] (S)-3-hydroxybutanoate + 2-oxoglutarate = (R)-2- hydroxyglutarate + acetoacetate 4-fumaryl-acetoacetate + H ₂ O \rightarrow fumarate + acetoacetate + H ⁺ (R)-3-hydroxybutanoate + NAD ⁺ \leftrightarrow acetoacetate + NADH + H ⁺ (S)-3-hydroxy-3-methylglutaryl-CoA \rightarrow acetoacetate + acetyl-CoA	leucine degradation I tyrosine degradation ketogenesis acetone degradation I (to methylglyoxal) ketolysis	BCAT1 BCAT2 MCCC2 MCCC1 AUH HMGCL HMGCLL1 IVD TAT HPD HGD GSTZ1 FAH ACAT1 HMGCS2 BDH1 CYP2U1 CYP2S1 CYP4X1 CYP2A6 AKR1B1 AKR1B10 CYP2E1

Transformations: New SmartTable from Column

Compounds of parimay

choose a property + j ==

1 2 3 4 Next Show all

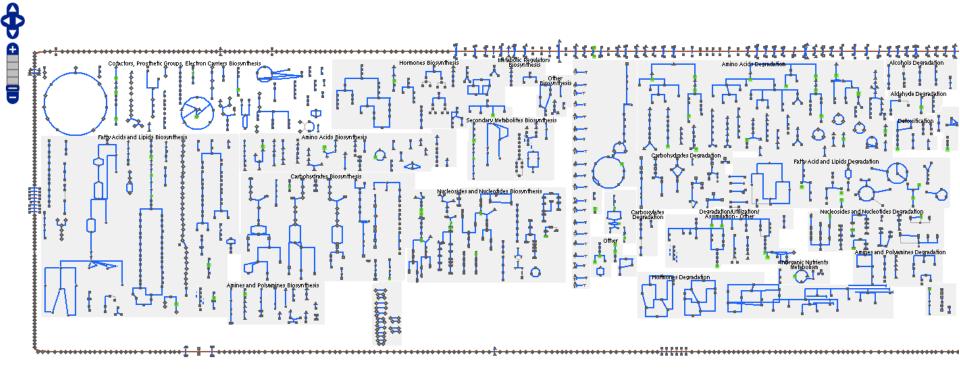
		·	
	Pathways of compound from Human Metabolomics Synthetic 4	Genes of pathway ∢	Compounds of pathway
- 1	4-hydroxybenzoate biosynthesis	ΤΑΤ	L-tyrosine 2-oxoglutarate L-glutamate 4-hydroxyphenylpyruvate ATP AMP diphosphate 4-hydroxybenzoate NAD* coenzyme A 4-coumaryl-CoA H* 4-hydroxybenzoyl-CoA acetyl-CoA NADH 3-(4-hydroxyphenyl)lactate 4-coumarate H ₂ O
2	5-aminoimidazole ribonucleotide biosynthesis	PPAT PFAS GART	5-amino-1-(5-phospho-β-D-ribosyl)imidazole 2-(formamido)-N ¹ -(5-phospho-β-D-ribosyl)acetamidine 10-formyl-tetrahydrofolate tetrahydrofolate N^2 -formyl- N^1 -(5-phospho-β-D-ribosyl)glycinamide glycine ATP H* ADP phosphate N^1 -(5-phospho-β-D-ribosyl)glycinamide L-glutamate diphosphate 5-phospho-α-D-ribosylamine 5-phospho-α-D-ribose 1-diphosphate

Other Operations on SmartTables

- Set union, intersection, difference among two SmartTables
- Filter SmartTable rows to keep/reject all rows containing specified value or substring or regular expression
- Share SmartTable with public or specified users
- Freeze SmartTable for publication

Enrichment Analysis

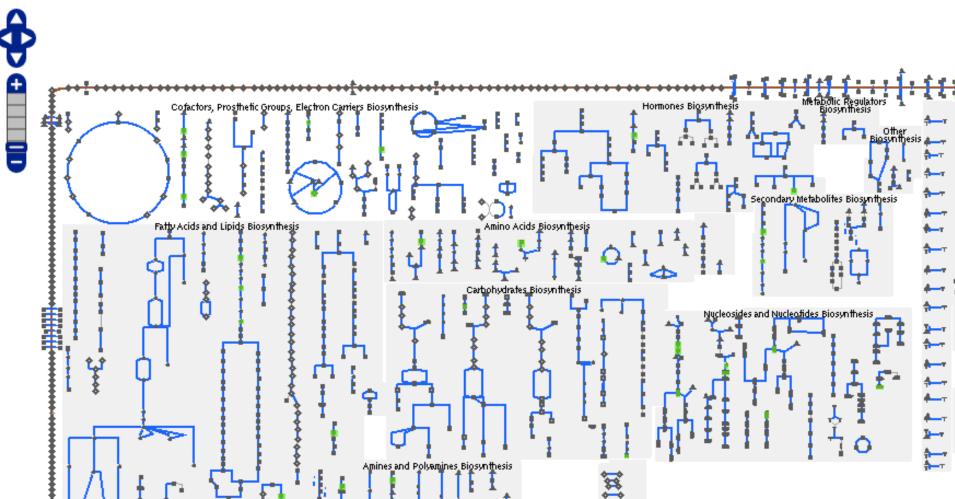
- Statistical method to find classes of objects that have more or less objects than would be expected by chance
- * Based on the Hypergeometric Distribution
- Can perform enrichment, depletion, or both
- Multiple ontologies can be used in Pathway Tools
- * Multiple testing correction optional

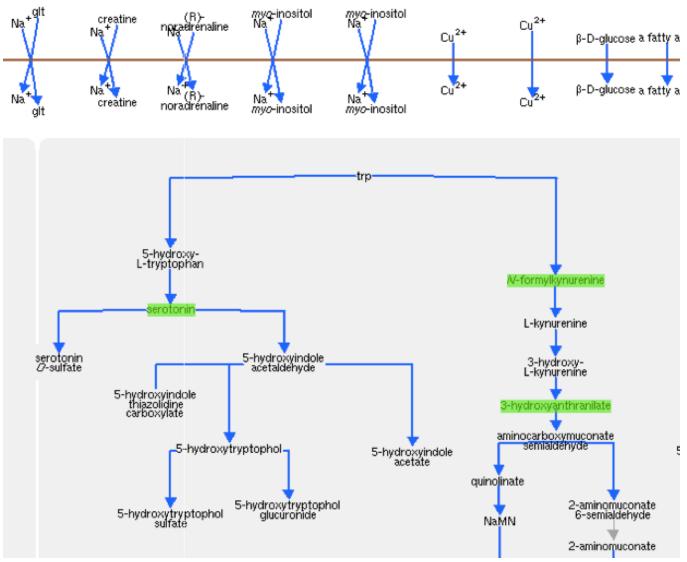

Enrichment Analysis

1	NAD <i>de novo</i> biosynthesis	0.01065204	nicotinate adenine dinucleotide formate <i>N</i> -formylkynurenine 3-hydroxyanthranilate
2	tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde	0.010885004	formate <i>N</i> -formylkynurenine 3-hydroxyanthranilate
3	NAD Biosynthesis	0.014184234	nicotinate adenine dinucleotide formate <i>N</i> -formylkynurenine 3-hydroxyanthranilate
4	NAD Metabolism	0.01838762	nicotinate adenine dinucleotide formate <i>N</i> -formylkynurenine 3-hydroxyanthranilate
5	tryptophan utilization II	0.030494805	formate N-formylkynurenine 3-hydroxyanthranilate serotonin nicotinate adenine dinucleotide
6	tryptophan degradation	0.04628297	formate N-formylkynurenine 3-hydroxyanthranilate
	tryptophan utilization I © 2014 SRI International	0.050800793	formate N-formylkynurenine 3-bydroxyanthrapilate

Paint Metabolomics Data onto Cellular Overview – Boolean Data

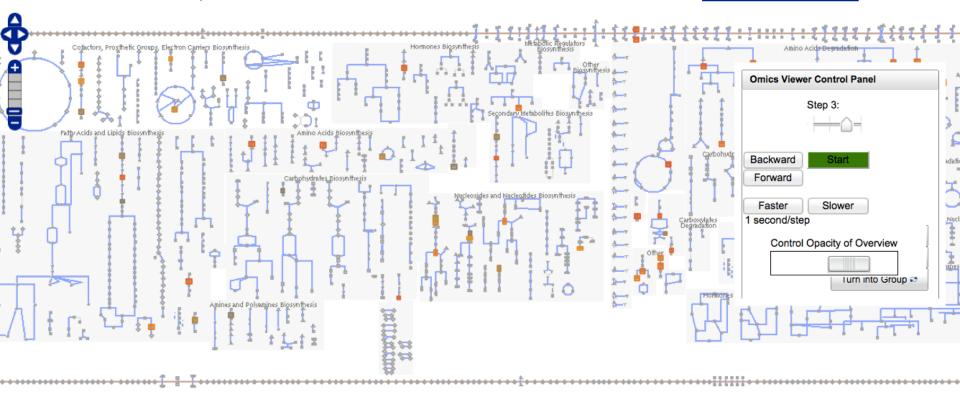
Cellular Overview of Homo sapiens

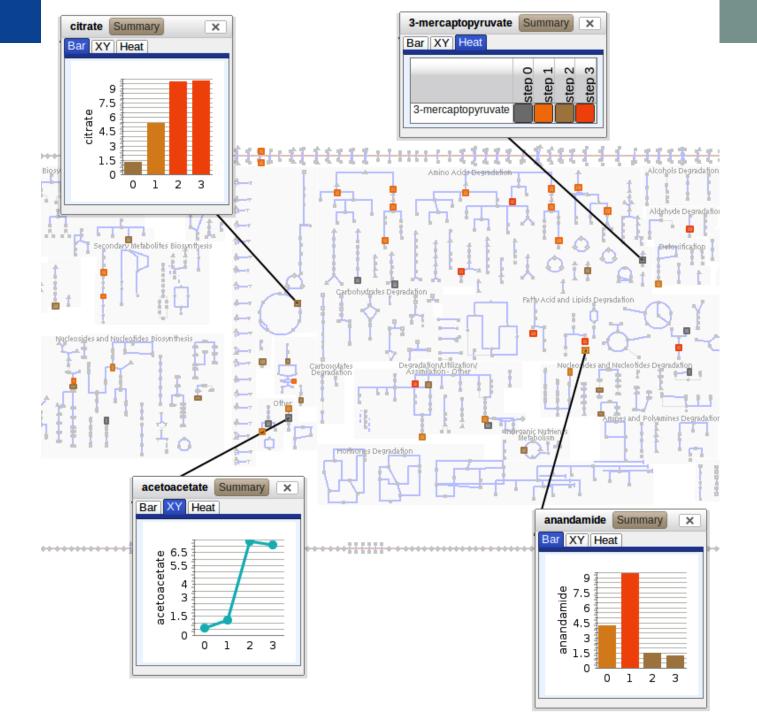

Pan left/right/up/down the entire diagram by holding the left mouse button, click on an object for more info, right-click (ctrl-click for Mac) for menu

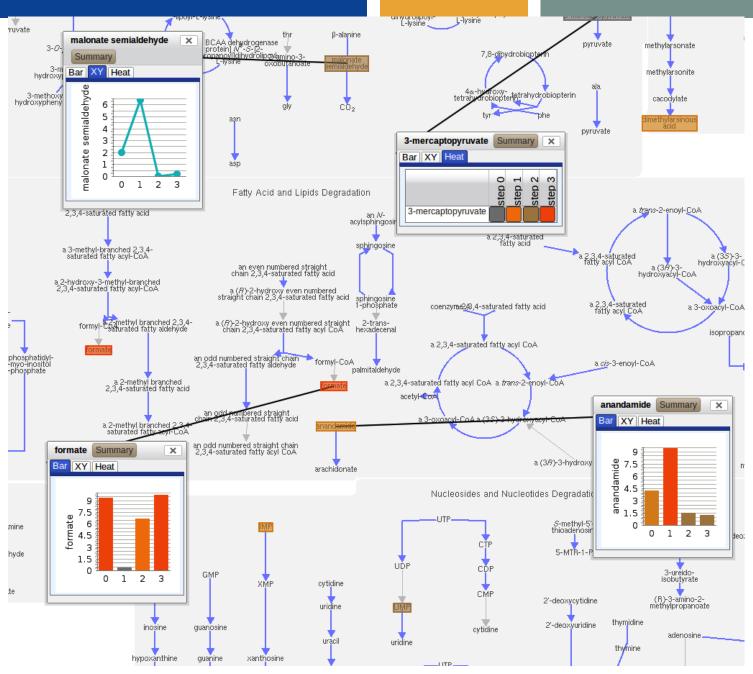

Paint Metabolomics Data onto Cellular Overview

Cellular Overview of Homo sapiens

Pan left/right/up/down the entire diagram by holding the left mouse button, click on an object for more info, right-click (ctrl-click for Mac) for menu


Paint Metabolomics Data onto Cellular Overview




Paint Metabolomics Data onto Cellular Overview – Animation of Numeric Data

Cellular Overview of Homo sapiens

Cellular Overview

Acknowledgements

•SRI

 Suzanne Paley, Ron Caspi, Mario Latendresse, Ingrid Keseler, Carol Fulcher, Tim Holland, Markus Krummenacker, Tomer Altman, Richard Billington, Pallavi Kaipa, Deepika Brito

EcoCyc Collaborators

 Julio Collado-Vides, Robert Gunsalus, Ian Paulsen

MetaCyc Collaborators

- Sue Rhee, Peifen Zhang, Kate Dreher
- Lukas Mueller, Hartmut Foerster

•Funding sources:

 NIH National Institute of General Medical Sciences

BioCyc webinars: biocyc.org/webinar.shtml

http://www.ai.sri.com/pkarp/talks/

Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

> Please Visit: <u>www.omicsgroup.com</u> <u>www.conferenceseries.com</u> <u>www.metabolomicsconference.com</u>