Central Auditory Processing: From Molecule to Behavior

Patrick C. M. Wong
The Chinese University of Hong Kong
Northwestern University

p.wong@cuhk.edu.hk
brain.cuhk.edu.hk
“The Auditory System”
The pathway of the auditory system. The major pathways are indicated by heavy arrows.
Research Goal

• To understand the **basic** mechanisms of central auditory processing **from molecule to behavior**, in order to:
 – Have a comprehensive understanding of pathophysiology of disorders
 – Enhance treatments
 – Optimize learning for everyone
Three Strategies

• #1. Examine stages of neural processing along the auditory pathway to delineate domain-general and – specific properties of the CNS

• #2. Capitalize on our knowledge of the cellular and molecular characteristics of the brain, to develop and test hypotheses about the genetic basis of complex auditory functions (spoken language)

• #3. Through looking at the CNS as a network, we hope to gain a fuller understanding of spoken language processing problems and treatments.
#1. Stages of Neural Processing
Mandarin Tone – Mandarin Passive

Mandarin Subjects

English Subjects

Wong et al. (2004).

J Neuroscience
Successful vs. Less Successful (Post-Training)

= Successful > Less Successful Learners
= Less Successful > Successful Learners

Wong et al. (2007). Human Brain Mapping
The Auditory Pathway

- Lateral fissure
- Auditory cortex
- Medial geniculate nucleus
- Inferior colliculus
- Dorsal cochlear nucleus
- Lateral lemniscus
- Trapezoid body
- Auditory nerve

Speech sounds

IBEs Combo

IBEs

Suga et al.
Soundwave to Brainwave

SOUNDWAVE

BRAINWAVE

Low pitch

High pitch

da

SOUNDWAVE

BRAINWAVE
Wong et al. (2007). *Nature Neuroscience*
FFR from Infants
#2. Genetic Basis of Complex Auditory Behavior
Brodmann (1909)
Superior Temporal Region
(a) Cyto- vs. (b) Receptor-

Morosan et al. 2005
“Auditory” Network

Non-Auditory

Temporal Cortex (Auditory)

Sub-cortical (Auditory)

Kaas & Hackett (2000), *PNAS*
• Genes -> **Neurons (e.g., receptors)** -> Systems -> Behaviors (e.g., language)
Grammar Learning

- Grammar learning
 - Procedural memory
 - Fronto-striatal System
 - Dopaminergic System
 - DA Receptor Genes
DRD2 Polymorphism

- A1A1, A1A2, or A2A2
 - Presence of A1 allele is associated with reduced D2 receptor binding in basal ganglia (Thompson et al., 1997)
 - BUT might be consequential to ANKK1 signaling and indicative of more general neural function
DRD2 Taq1A

Chromosome 11

NCAM1 TTC12 ANKK1 DRD2

Taq1A (rs1800497)
Morpho-Phonology Learning

• Learning Opaque phonological rules involving combining morphemes and performing phonological transformations
 – Generalization to Untrained Stimuli
 • Simple phonology Condition
 • Complex phonology Condition

• Learners & Non-Learners (all adults)

Ettlinger, Bradlow, & Wong (2014). *Appl Psych*
Transparent (simple) & Opaque (complex) Grammar

<table>
<thead>
<tr>
<th></th>
<th>Singular</th>
<th>Plural</th>
<th>Dim</th>
<th>Dim. Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘dog’</td>
<td>vib</td>
<td>vib-il</td>
<td>ki-vib</td>
<td>ki-vib-il</td>
</tr>
<tr>
<td>‘cat’</td>
<td>pesh</td>
<td>pesh-el</td>
<td>ki-phinx</td>
<td>ki-phinxel</td>
</tr>
</tbody>
</table>

Transparent and opaque items are mixed during training.
Individual Differences
Memory & Language Learning

- Significant positive correlation between sound learning & procedural memory

\[
r(21) = 0.745, \quad p < 0.001
\]
Frontostriatal Pathway & Success

Ettlinger, Novis, Wang, & Wong (submitted)
Network Differences
Network Differences

The chart illustrates differences in network activity across various pathways (BR->RMTG, Hipp->BG, LMTG->BR, MTG->BG) for different groups:
- **Learners - Complex**
- **Learners - Simple**
- **Non-learners - Complex**
- **Non-learners - Simple**

The chart shows quantitative measures with error bars indicating the variability of the data.
Neuroanatomy

$r = .58, p = .002$
$r = .47, p = .02$
DRD2 and Phenotype

Procedural Memory

Grammar Learning

Model Goodness-of-Fit Statistics

Grammar Learning: $\chi^2 = 0.11, \text{DF}=2, p=0.95$ (good fit)
#3. Auditory System as a Network
“Auditory” Network

Non-Auditory

Temporal Cortex (Auditory)

Sub-cortical (Auditory)

Kaas & Hackett (2000), *PNAS*
• Short- and long-distance neural connections reflect complex auditory functions
 – Frontotemporal anatomical connectivity reflects cognitive-auditory functional connection
 – Treatments of complex auditory behaviors cannot rely on amplification alone
Speech Perception in Noise in Older Adults

Internal unpublished data
Speech Perception in Noise in Older Adults

QSIN Performance

% Acc in Repeating Words in Noise

Old (Normal) Old (Peripheral Loss) Young

Internal unpublished data
• Decline in hearing (presbycusis)
• Do neurocognitive factors explain differences in speech perception in noise in younger and older adults?
fMRI Experiment

12 sec Stimulus Presentation
(3 sec Trials)

Quiet Quiet Quiet Quiet

SNR-5 SNR-5 SNR-5 SNR-5

"axe"
(SNR-5)

IR = 14 sec

2 sec Scanning
Functional fMRI

Young > Old: Auditory Cortex (STR)

Old > Young: Cognitive Regions (Prefrontal/PFC & Posterior Parietal/PP)
Cognitive “Compensation”

• Older Adults – Speech in noise correlated with PFC activation (not true in younger adults)
Neuroanatomy

• Older adults show atrophy across brain regions
• Are neuroanatomical differences associated with speech perception in noise?
Wong et al. (2010). *Ear Hearing*
Older vs. Younger

% Correct (QuickSIN 0 dB SNR condition)

Left Pars Triangularis (fractional hemispheric volume)

r(13) = .601
p = .018

r(12) = -.478
p = .084

Left Superior Frontal Gyrus (mm thickness)

r(13) = .688
p = .005

r(12) = .378
p = .183
Treatment

• Cognitive training
 – If neurocognitive factors are associated with speech perception in noise, improving cognitive functions might be effective.
 – What aspects of cognition to train?
 – Do different aspects of cognition interact?
 – Dosage?
Working Memory Training

- Ten-session training
- Subjects hear a series of digits (e.g., 3, 5, 1)
- Respond in reverse order (1, 5, 3)
- Number of digits adaptive
- Noise level increased by day
Speech in Noise Improvement
Children with Cochlear Implants

• Auditory, cognitive, and language abilities better than hearing impaired but worse than their normal hearing peers
Working Memory in CI Children

Pisoni & Cleary, 2003
Phonological Awareness in CI Children

Spencer & Tomblin, 2009
Child CI Users

<table>
<thead>
<tr>
<th></th>
<th>Trained M</th>
<th>Trained SD</th>
<th>Control M</th>
<th>Control SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>67.6</td>
<td>9.8</td>
<td>62.7</td>
<td>19.2</td>
</tr>
<tr>
<td>Age at Implant</td>
<td>21.9</td>
<td>15.4</td>
<td>23.0</td>
<td>10.3</td>
</tr>
<tr>
<td>CI Duration</td>
<td>45.7</td>
<td>13.2</td>
<td>39.7</td>
<td>24.8</td>
</tr>
<tr>
<td>Pre-Implantation Speech Awareness Threshold</td>
<td>74.5</td>
<td>11.7</td>
<td>74.4</td>
<td>17.9</td>
</tr>
<tr>
<td>Speech Awareness Threshold at Pretest</td>
<td>6.5</td>
<td>5.8</td>
<td>6.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>100.0</td>
<td>12.7</td>
<td>105.2</td>
<td>16.8</td>
</tr>
</tbody>
</table>

Testing and Training Schedule

Expressive Vocabulary
Receptive Vocabulary
Oral Language
IQ

Earobics Training
150 minutes/week
4 weeks

Normal Classroom Activities
4 weeks

Expressive Vocabulary
Receptive Vocabulary
Oral Language

Earobics Training
150 minutes/week
4 weeks
Training
OWALS: Trained Group Improved
Research Goal

• To understand the basic mechanisms of auditory processing from molecule to behavior, in order to:
 — Have a comprehensive understanding of pathophysiology of disorders
 — Enhance treatments
 — Optimize learning for everyone
Conclusions

• #1. Stages of neural processing along the auditory pathway can delineate domain-general and – specific properties of the CNS

• #2. Capitalize on our knowledge of the cellular characteristics of the brain, we can develop and test hypotheses about the genetic basis of complex auditory functions

• #3. Through looking at the CNS as a network, we can gain a fuller understanding of spoken language processing problems and treatments.
Acknowledgements

Alice Chan, Bharath Chandrasekaran, Erika Skoe, Erin Ingvalson, Francis Wong, Hanjun Liu, Jing Zheng, Mac Ettlinger, Nancy Young, Nina Kraus, Sumit Dhar, Todd Parrish, Tyler Perrachione

brain.cuhk.edu.hk
p.wong@cuhk.edu.hk

National Institutes of Health (USA) (R01DC008333 & R01DC013315)
National Science Foundation (USA) (BCS-1125144)
Research Grants Council (Hong Kong) (RGC 477513 & 14117514)
Food and Health Bureau (Hong Kong) (HMRF 01120616)
Lui Chee Woo Foundation
Global Parent Child Resource Centre Limited
Un-weighted clustering

- Variants (all variants or non-common variants) are aligned across all samples.
- Boxes in the same color indicate the samples are clustered in the original tree.
- In the case for all variants, the clustering is actually not very clear, giving G-13-0026, G-14-0010 and G-13-0054 standing alone. This is likely due to the noisy background of variants.

Bootstrap consensus for all variants
Log likelihood = -588981.51
Bootstrap consensus for non-common variants
Log likelihood = -62798.53
Network Efficiency

Airport Network

Paleari et al. (2009). Transportation Research Part E
Efficiency

-A graph theoretic measure
-Speed of information transfer
-A connection is defined by strength of inter-regional correlation

\[E(i) = \frac{1}{N-1} \sum_{j \in N} \frac{1}{L_{ij}} \]

where \(N \) is number of nodes in network
\(L_{ij} \) is shortest path between nodes \(i, j \)
• Group x Listening condition interaction
• Less efficient for older adults in noisy listening condition
• Cognitive and auditory brain