

High intensive sweeteners An overview of non-nutritive (artificial) sweeteners used to reduce calories

Osama O. Ibrahim, Ph.D

Consultant Biotechnology

Gurnee, IL 60031

U.S.A.
bioinnovation04@yahoo.com

Agenda

- Introduction
- Known artificial sweeteners (HIS).
- Their Chemicals structure.
- Their manufacture processes.
- Their benefits, Safety, applications, and regulatory status.
- · Summary.

Introduction

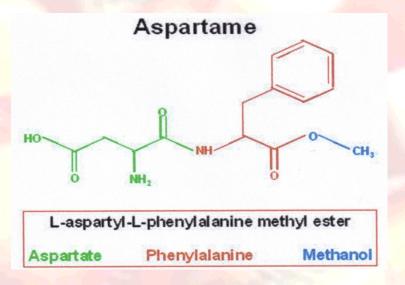
- High intensive sweeteners (HIS) are sweeter than sucrose with zero or low calories.
- Consumers are increasingly concerned with diabetes, weight gain, obesity-related disorder and dental caries.
- This is shaping the need for manufacturing something sweet that is low in calories.
- More than 12 million tons of sucrose produced per year.

Known artificial sweeteners (HIS)

Peptides:

- Aspartame.
- Neotame.
- Alitame.

Natural extracts:


- Stevia.
- Monk fruit
- Thaumatin.
- Brazzein.

Synthetic chemistry:

- Sucralose.
- Acesulfame-K
- Saccharine.
- Cyclamate.

Artificial sweeteners (Peptides)

[L-aspartyl-L-phenylalanine methyl ester]

- A low calorie sweetener.
- 200 times sweeter than sucrose.
- Digestible.
- Does <u>not</u> promote tooth decay.
- Enhance and intensified flavor (citrus and fruits)

Manufacturing process

Aspartame is made through fermentation and synthesis process.

1) Fermentation:

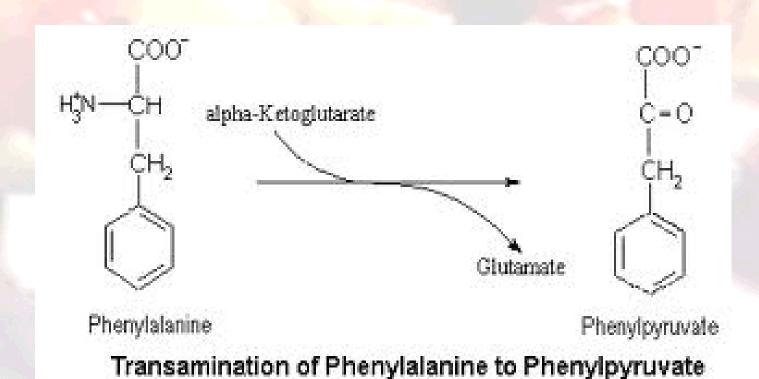
- B. flavus for L-aspartic acid production
- C. glutamicum for L-phenylalanine production Only L form of phenylalanine is used in manufacturing.
- Separation of L phenylalanine:
 - A) Chemical separation: Separated from D-phenyl alanine by adding acetic anhydride and sodium hydroxide. Extraction of L-phenyl alanine from aqueous layer.
 - B) *Enzymes separation*: using amino acylase enzymes from *Aspergillus oryzae*..

Manufacturing process Cont.

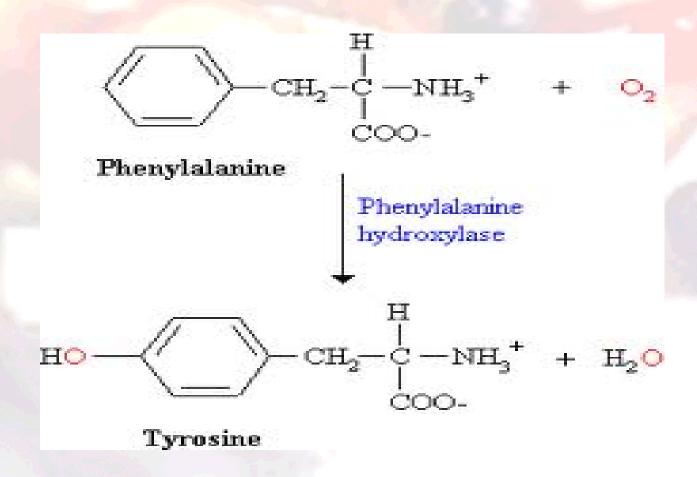
2) Synthesis:

The two amino acids derived from fermentation process are modified to produce aspartame.

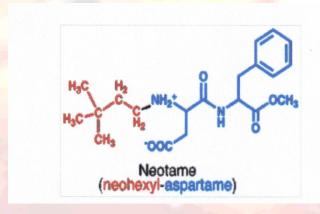
- L-Phenylaalanine is reacted with methanol to form methyl ester.
- L-aspartic acid is reacted with benzyl rings to shield specific sites.
- The two modified amino acids are mixed in acetic acid solution at 65°C for 24 hrs.
- Aspartame recovery


Safety

- It is safe and approved for people with diabetes, pregnant and nursing women.
- Acceptable daily intake (ADI) is 40mg/kg body weight.


Restriction:

- People with phenyl-ketonuria (PKU) disease.
- PKU is a rare inherited disease that prevent the metabolism of essential amino acids.
- Accumulation of phenyl-alanine in the body could cause health problems including mental retardation.
 - * A normal blood phenyl-alanine level is about 1mg/dl
 - * In classic PKU, levels may range from 6 to 80 mg/dl9


Phenyl alanine metabolism

Phenyl alanine metabolism

Neotame

(N-[N-(3,3-dimethylbutyl)-L- α-aspartyl]-Lphenylalanine 1-methyl ester)

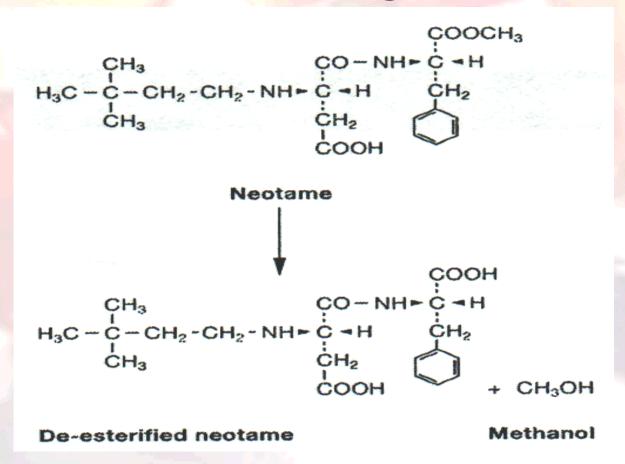
- Peptide derivative of aspartic acid & Pheynl-alanine.
- Approved as a sweetener and flavor enhancer.
- 7,000-13,000 times sweeter than sucrose.
- 30—60 times sweeter than aspartame
- Rapidly metabolized by human.

Manufacturing process

 Neotame is also made through fermentation and synthesis process.

1) Fermentation:

Similar to Aspatame


2) Synthesis:

Similar to aspartame

plus

The addition of 3,3 dimethylbutyl to L-Aspartic acid.

Advantages

 The major metabolic pathway is hydrolysis of the methyl ester by esterase enzymes.

Advantages (cont.)

- The presence of 3,3dimethybutyl in the structure blocks peptidases enzymes in releasing the amino acid L-phenylalanine.
- No need to add special labeling for phenyketonuric (PKU) individual.

Regulatory Status

- Approved for use as sweetener and flavor enhancers in foods and beverages in United States, Australia and New Zealand.
- Can be blended with nutritive sweeteners (HFCS, sucrose) to match the taste while providing significant cost savings.
- Applications:

Beverages and cereals.

Tabletop sweeteners

Chewing gums and confectionary.

Frozen desserts, ice cream, yogurt.

Alitame

HOOC H NH2 H O H CH3

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

[L-alpha –Aspertyl-N-D-alaninamide]

- It is a dipeptides of L-aspartic acid and D-alanine, with a terminal *N*-substituted by tetramethyl-thietanly-amine.
- It is 200-300 times sweeter than sucrose and 10 times sweeter than aspartame.
- Soft drink with aspartame develop off taste after long storage.

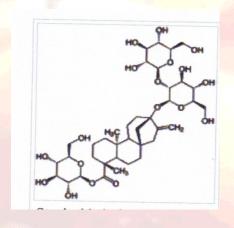
Manufacturing process

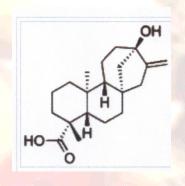
- Alitame is prepared by a multistep synthesis involving the reaction between two intermediates.
 - (S)-[2,5-dioxo-(4-thiozolidine)]acetic acid.
 - (R)-2-amino-N-(2,2,4,4-tetramethyl-3-thietanyl)propanamide.
- The final product is isolated and purified by crystallization.

Benefits

- Clean sweet taste.
- Excellent stability at high temperature.
- Suitable for diabetics.
- · Safe for teeth.
- Synergetic when combined with other low calorie sweeteners.
- Its caloric contribution to the diet is negligible.

Safety




- Safe for human consumption.
- Acceptable daily intake (ADI) is 1mg/ kg. body weight.
- The aspartic acid is metabolized normally, but alanine amid does not further hydrolyze.
- Alitame has been approved under the brand name Aclame for use in a variety of food and beverage products in Australia, New Zealand, Mexico and China.
- In USA its petition as a sweetening agent or flavoring in foods has been withdrawn due to manufacturing cost.

Artificial sweeteners (Natural extracts)

Stevia

Stevioside

Steviol glycosides

Rebaudioside-A

- It is an extract from the leaves of the plant *Stevia rebaudiana*.
- This plant is originated in south America, but is also grown in several Asian countries
- Non-cloric sweetener about up to 300 times sweet than sucrose.

Status

- Stevioside and rebaudioside are two of the sweet steviol glycosides in the stevia leaf.
- In the year 2008, the FDA approved the use of purified rebaudioside-A and classified it as Generally Recognized As Safe (GRAS).
- Rebaudioside-A is also called by the name Reb-A and rebiana-A.
- It is blended with erythritol and marketed under the name Truvia and PureVia.

Stevia Market

- Stevia manufacturer has predicted a global stevia products industry valued at \$10 billion as soon as 2015.
- The World Health Organization (WHO)
 estimates stevia intake could eventually
 replace 20-30% of all dietary
 sweeteners.

Limitation

• Its sweetness accompanied by liquorices like after taste

Applications

 Soft drink, Japanese -style vegetable products, table top sweeteners, confectionery, fruit products, and seafood's.

Monk Fruit

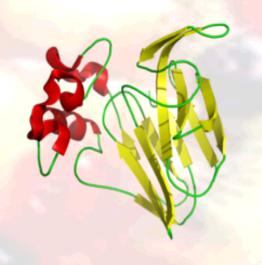
Mogroside V

- Natural powder or concentrate made from monk fruit (Siraitia grasvenorii).
- Zero calorie, 150-250 times sweeter than sucrose (the sweeter level is vary based on the application)
- Pure and clean sweet taste.
- Soluble in water.
- Heat stable up to 125°C.

Mogrosides

HO 12 18 20 23 24 25 27 OH R₁O
$$\frac{10}{3}$$
 $\frac{10}{4}$ $\frac{10}{5}$ $\frac{19}{6}$ $\frac{10}{7}$ $\frac{10}{28}$ $\frac{10}{3}$ $\frac{10}{4}$ $\frac{10}{5}$ $\frac{10}{6}$ $\frac{10}{7}$ $\frac{10}{28}$ $\frac{10}{3}$ $\frac{10}{4}$ $\frac{10}{5}$ $\frac{10}{6}$ $\frac{10}{7}$ $\frac{10}{7}$ $\frac{10}{28}$ $\frac{10}{7}$ $\frac{10}{28}$ $\frac{10}{7}$ $\frac{10}{28}$ \frac

Triterpene glycosides


 Mogrosides are formed of varying numbers of glucose units from 2 to 6.

- Mogroside II:	R ₁ (G)	R ₂₄ (G)
- Mogroside III :	$R_1(G)_{6,1}$	$R_{24}(G_{\frac{2}{2}}^{6-1}G)$
- Mogroside IIII:	$R_1(G_{}^{6-1}G)$	$R_{24}(GG)$
- Mogroside V :	$R_1(GG)$	$R_{24}(G \overset{6-1}{\underset{2-1}{\checkmark}} G)$
- Mogroside VI:	$R_1(G^{-1}-G)$	$R_{24}(G \overset{6-1}{\underset{2-1}{\checkmark}} G$
	2-1	G
	G	

Applications

- It is Generally Recognized As Safe (GRAS).
- Available in the market under the trade name *Purefruit*.
- Its applications as sweetener and flavor for: food products, beverages, gums, backed goods, dietary supplements, powdered drinks, nutritional bars, and chocolates.

Thaumatin

Thaumatin I

- Thaumatin II: a 1235 amino acid. It is a precursor for Thaumatin I.
- Thaumatin I: a 1207 amino acid (3kDa).

 It is the sweetener

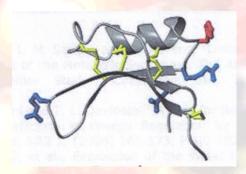
Thaumatin

- A low calorie protein sweetener and flavor enhancer.
- It is an extract from West African fruit (katemfe fruit) Thaumatococcus danielli.
- 2000-3000 times sweeter than sucrose.
- Metabolized by the body as any other protein.
- It is a Generally Recognized as Safe (GRAS) by FDA in USA.
- Gained approval for over 30 countries around the world.

Benefits

- Natural sweetener in a dried form.
- Stable in freezing temperature, heat, and pH.
- Soluble in water.
- Does not promote tooth decay.
- Synergetic when combined with other lowcalorie sweetener.
- Available in the market under the trade name
 Talin.

Applications

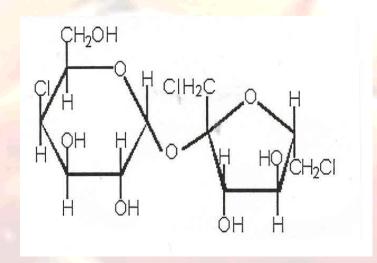

- Food and Beverages.
- Sweetener blends.
- Pharmaceutical and vitamin tablets.
- Oral care products.
- Animal feed and pet foods.

Limitation

- Delay perception of sweetness especially at high usage levels.
- Leaving a liquorices –like aftertaste at high usage levels

Brazzein

- Sweet tasting protein extracted from west African fruit Pentadiplandra brazzeana.
- Consist of 54 amino acid arranged in one alpha-helix and three strands betasheets.
- Its large scale extraction from the fruit is not feasible, but it has been genetically engineered in corn.
- The gluten protein from the modified corn contains 4% brazzein.


Brazzien (properties)

- Non-caloric sweetener.
- 1200 times sweeter than sucrose.
- Its taste is similar to sucrose with lingering sweet aftertaste.
- PH stable at the range of 2.5-8.0, and heat stable at 98°C.
- These stability properties makes it practical for many commercial applications.
- It is commercially available in small packets under the brand name Cweet

Artificial sweeteners (Synthetic chemistry)

Sucralose

[Trichloro-galactosucrose]

- Sucralose is a common name for a new high intensity sweetener derived from sucrose.
- It is about 600 times sweeter than sucrose.
- Produced by the selective chlorination of sucrose

Benefits

- Non-cloric and does not breakdown in the body.
- Does not promote tooth decay.
- Soluble in water.
- Excellent stability in wide range of processed foods and beverages.
- Heat stable.

Safety

- Safe for human consumption.
- Approved by FDA and more than 35 countries.
- Acceptable daily intake (ADI) is 15mg/kg body weight.

Applications

Wide ranges of applications.

Acesulfame-K (Ace K)

potassium 6-methyl-2,2-dioxo-2*H*-1,2λ6,3-oxathiazin-4-olate

- 180-200 times sweeter than sucrose.
- It is sweet as aspartame, about 1/2 as sweet as saccharine and about 1/4 as sweet as sucralose.
- It is usually used in combination with another sweetener, such as aspartame or sucralose.

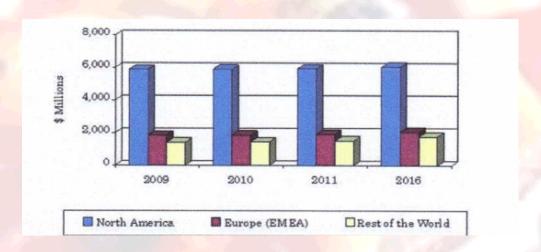
Applications

- It is stable under heat and under moderately acidic or basic conditions.
- It is being used in baking, carbonated beverages, protein shakes, pharmaceutical products and in products that require a long shelf life.
- ADI is 15 mg./kg, body weight.
- Available under trade names Sunett and Sweet One.
- In Europe it is known by the name E950

Saccharin

Benzoic sulfilmine

- 200-700 times sweeter than sucrose.
- Applied in both food and non-food products.



Cyclamate

Sodium N cyclohexilesulfamate

- 30-60 times sweeter than sucrose.
- Used in Canada and over 50 other countries.
- Its acceptable Daily Intake (ADI) is 11 mg/kg body weight.
- The Cancer Assessment Committee of the FDA decided that cyclamate is not carcinogenic.
- The FDA is currently reconsidering its ban.

Global food and beverages market of artificial sweeteners

- Global market for the year 2010 was \$ 9.2 billions.
- Global market for the year 2011 is \$ 9.3 billions.
- Global market for the year 2016 is expected to reach \$ 9.9 billions.
- USA market in the year 2011 was \$ 5.9 billions and is expected to reach 6 billions in the year 2016.
- European market in the year 2011 was \$ 1.9 billions and is expected to reach \$ 2 billions in the year 2016.

Summary

- Currently, aspartame is facing a strong competition from newly developed high intensive sweeteners (HIS).
- World Health Organization (WHO) estimates stevia intake could eventually replace 20-30% of all dietary sweeteners.
- The long used sweetener *saccharine* is continuing to decline.