

Oligosaccharides An overview of manufacturing and application in food products

Osama O. Ibrahim, Ph.D.

Consultant Biotechnology
Gurnee, IL. 60031
U.S.A.

bioinnovation04@yahoo.com

Agenda

- Known oligo-Saccharides.
- Properties.
- Benefits.
- Legal status.
- Manufacturing processes.
- Conclusion

Oligosaccharides

- Oligosaccharides are important group of polymeric carbohydrates that are found in all living organisms.
- Oligosaccharides composed of 2 to 10 monosaccharide residues.
- These monosaccharide's linked together by glycoside (a-1,4 or a-1,6) bonds.
- The discovery of new enzymes helps in developing other oligosaccharides of monosaccharide's with other linked bonds.

Trehalose (a,a 1,1), Gentio-oligosaccharides (β-1,6), Nigero-oligosaccharides (a-1,3), Cyclodextrin (a-1-4).

Oligosaccharides groups

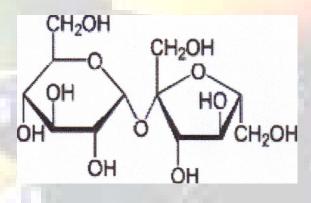
- Sucrose-related oligosaccharides.
- Starch-related oligosaccharides.
- Lactose-related oligosaccharides.
- Others-oligosaccharides.

Oligosaccharides Substrates

	<u>Oligosaccharides</u>		<u>Substrate</u>
•	Fructo-oligosaccharide -		Sucrose/Innulin.
•	Malto- oligosaccharide -	_	Starch.
•	Isomalto-oligosaccharide		Starch.
•	Galacto-oligosaccharide	-	Lactose.
•	Lactosucrose —		Lactose + sucrose.
•	Lactulose —		Lactose.
٠	Xylo- oligosaccharide		Xylan.
•	Soy- oligosaccharide ——	-	Soy.

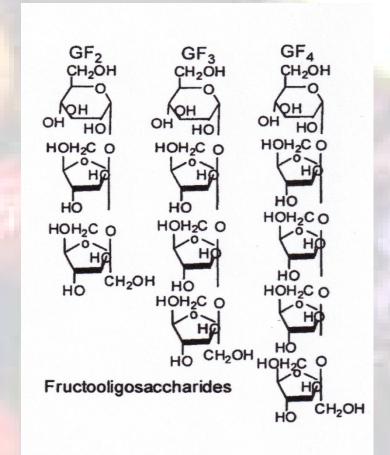
Properties

- Low sweetness intensity (1/3 of sucrose)
- Calorie free.
- Resistance to hydrolysis by digestive enzymes.
- Non-cariogenic (inhibit the growth of Streptococcus mutans)
- Highly soluble than sucrose.
- Heat stable (doesn't degrade by heating process)
- Hydrolyze in high acid environment.


Benefits

- Prebiotic (enhance befidus bacteria in colon).
- Increase digestion of lactose metabolism.
- Increase mineral absorption.
- Increase HDL/LDL ratio.
- Decrease serum lipids and blood cholesterol.
- Decrease blood pressure.
- Decrease glycemic response.
- Decrease fecal PH, toxic, and carcinogenic metabolites.

Legal status


- Cannot be labeled as carbohydrates or sugars.
- Are not food additives.
- Are food ingredients.
- Applied without restrictions.

Sucrose-related oligosaccharides

Sucrose

O-α-D-glucopyranosyl-(1-2)β-D-fructofuranoside

Substrate products 9

Fructo-oligosaccharide (FOS)

- Naturally occurring sugar (fruits and vegetable).
- Built from sucrose (D-glucose and D-fructose).

$$G-(F)_n-F$$

Enzymatic reaction:

-
$$GF + GF \longrightarrow GF_2$$
 (1-Kestose)

-
$$GF + GF_2 \longrightarrow GF_3$$
 (Nestose)

By-product:

- Free glucose (process enzyme inhibitor)

FOS production enzymes

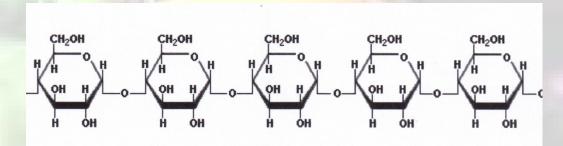
- Enzymes:
 - Fructosyltransferase (EC 2.4.1.9).
 - B-fructofuranosidase (EC.3.2.1.26).
- Microbial source:
 - Aureobacidium pullulans.
 - Aspergillus niger.
 - Arthrobacter sp.
 - Fusarium sp.
 - Lactobacillus vulgalicus

FOS Production (Enzymatic process)

- Step (1) Enzyme production:
 - Microbial cells propagation.
 - Cell harvesting.
 - Enzyme extraction (intracellular enzyme).
 - Enzyme purification.
- Step (2) FOS Production:
 - Free enzyme (batch process).
 - Immobilized enzyme (continuos process).

FOS Production (Whole cells process)

- Step (1) Enzyme production:
 - Microbial cells propagation.
 - Cell harvesting (centrifugation).
- Step (2) FOS Production:
 - Free whole cells (batch process).
 - Immobilized whole cells (*continuous process*).

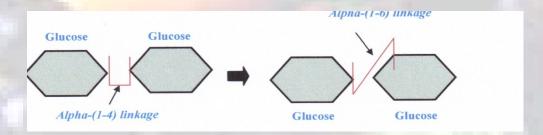

Optimum production conditions

- The raw material is sucrose or molasses.
- Optimum sucrose concentration (70-80%).
- Higher enzyme activity.
- Absence of hydrolytic enzymes (invertase).
- Optimum bioconversion pH (5.0-6.5), and temperature (50-60°C).
- Low by-product concentration (glucose/ fructose).
- Addition of glucose oxidase or glucose isomerase (enrichment process)

Enzymatic process vs. whole cells process

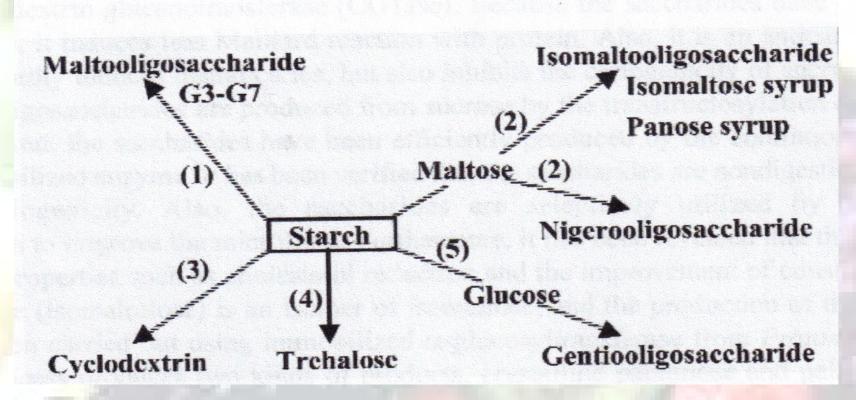
- Immobilized enzymes are superior to immobilized cells (faster processing)
- Stability of the immobilized cells is proved to be higher than immobilized enzymes.
- The minimum economical shelf life for the immobilized system is 3 months.
- Batch process needs additional process to remove enzymes or cells.

Starch-related oligosaccharides


Amylose starch

Amylopectin starch

Substrates

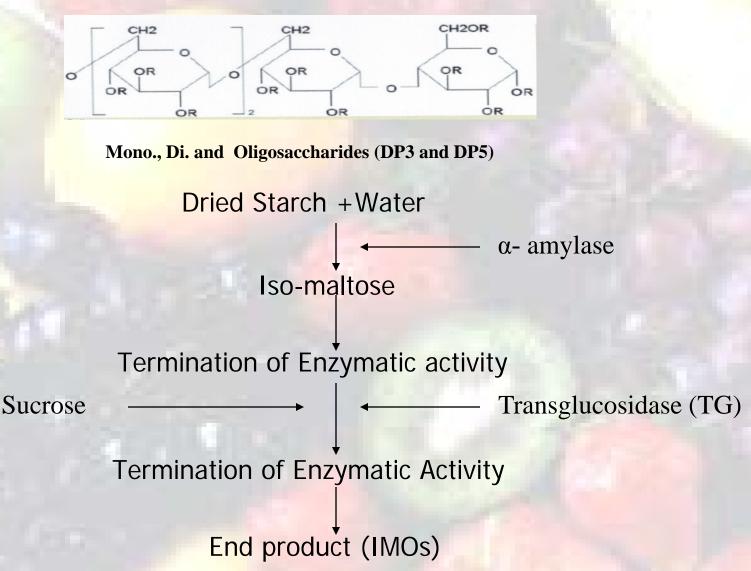

Starch oligosaccharides

 Starch oligosaccharides are composed of glucose units linked by a-1,4 and/or a-1,6 bonds.

- Oligosaccharides containing only a-1,4 bonds are called malto-oligosaccharides.
- Oligosaccharides containing both a-1,4 and a-1,6 bonds is called isomalto-oligosaccharides

Currently produced starcholigosaccharides

- (1) Amylase. (2) α-Glucosidase. (3) CGTase (4) MTSase, MTHase.
 - (5) β-Glucosidase (CGTase = cyclo maltodextrin transferees . MTSase = maltooligosaccharide trehalose synthase, MTHase = maltooligosaccharide trehalose hydrolase)


Malto-oligosaccharides (MOS)

- Debranching enzymes such as pollulanse are used first to break α -1,6 linkage of amylopectin starch.
- The conventional method is enzymatic hydrolysis of α-1,4 linkage starch using Malto-oligosaccharide forming amylases.
- These enzymes have different degree of glucose polymerization and are produced from different sources of microorganisms.

Malto-oligosaccharides Properties

- Malto-oligosaccharides are widely used as a ingredients in foods and has the following characteristics:
 - Carry a mellow sweetener.
 - The degree of coloring is lower than that of glucose.
 - Have a high moisture retaining capacity.
 - Have an ability to suppress aging of starchy food products.

Isomalto-oligosaccharides (IMOs)

B-fructfuranosidase applications

- React on sucrose as a glucose donor and saccharides as an acceptor
- Products such as:

Troddots sdorr ds.	Glucose donor	<u>Acceptor</u>
- Malto-oligosaccharide	Sucrose	Maltose
- Isomalto-oligosaccharid	le	Isomaltose

X Plus the use of Transglucosidase (TG)

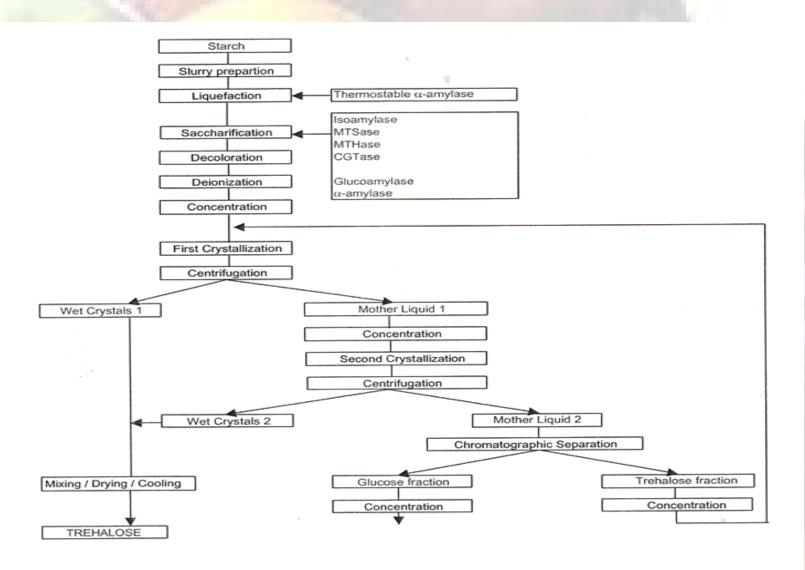
Isomalto-oligosaccharides Properties

- it is a mixture of short-chain carbohydrates...
- It's key components (DP) are iso-maltose, panose iso-maltotriose and higher oligosaccharides.
- It is resistant to digestion enzymes.
- It is prepiotic that able to improve gastrointestinal health'
- It has multiple application in a wide variety of foods such as dairy, confectionary, ready-to-eat cereal and cereal bars, meat and poultry products ,etc.

Isomalto-oligosaccharides

Trehalose

- It is a naturally occurring in bacteria, yeast, fungi, insects, and higher plants.
- It is a disaccharide, which consists of two glucose units.
- These two glucose units are linked by a-1,1 linkage (glycoside bond).


Production process

Maltooligosaccharide

MTSase (EC 5.4.99.15)

MTHase (EC 3.2.1.141)

Trehalose manufacturing process

Trehalose Properties

- Non-reducing disaccharide sugar.
- It has 40-45% sweetness in sucrose.
- Odorless, almost white crystals with sweet taste.
- Stable at all pH and temperature conditions.

Trehalose applications

- Bulk sweetener
- Texturizer.
- Stabilizer.
- Humectants.
- Formulation aid

Lactose-related oligosaccharides

Substrate

Galcto-oligosaccharides (GalOS)

- Naturally occurring in milk products.
- It is one of the major oligosaccharide in Japan.
- It is built from lactose(D-glucose and D-galactose).

G-(Gal)_n-Gal

		% of mixture
G-Gal —	→ di-saccharide	(33 %)
G-(Gal) ₂	→ tri-saccharide	(39 %)
G-(Gal) ₃	→ tetra-saccharide	(18 %)
G-(Gal) ₄	→ penta-saccharide	(7 %) ₁

Galacto-oligosaccharides (GalOS)

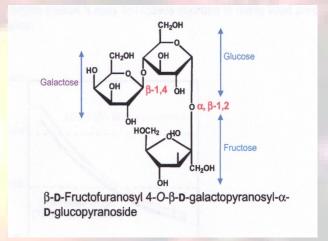
Enzyme Lactose + Lactose \longrightarrow GalOS + G G-Gal, G-(Ga)₂, G-(Gal)₃, G(Gal)₄

Process by-product:

- Glucose (enzyme inhibitor in the process).
- Galactose (galactocymia in the blood)

GalOS Production Enzyme

- Enzyme name:
 - B-galactosidase (EC 3.2.1.22).
 (Also known by the name lactase and B-galactosyl transferase)
- Microbial source:
 - Aspergillus niger.
 - Aspergillus oryzae.
 - Kluyveromycin lactis.
 - Kluyveromycin Fragili.
 - Bacillus circulans.
 - Streptococcus thermophilus.


GalOS Production process

- Step (1) Enzyme production:
 - Microbial propagation (*inducible* enzyme).
 - Cell mass removal (exracellular enzyme).
 - Enzyme purification.
- Step (2) GalOS Production:
 - Free enzyme (batch process)
 - Immobilized enzyme (continuous process).

Optimum Production conditions

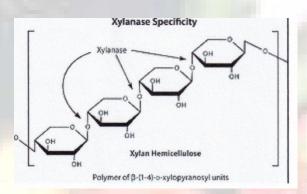
- The raw material is lactose or whey
- Optimum Lactose concentration (70-80%).
- Higher enzyme activity.
- Optimum bioconversion pH (5.0-6.5), and temperature (50-60°C).
- Low by-product concentration (glucose / galactose)
- Addition of glucose oxidase or glucose isomerase (enrichment process).
- Elimination of free galactose.

Lactosucrose

- Lactosucrose is a tri-saccharide of galactose, glucose and fructose.
- Has prebiotic effects and promotes intestinal mineral absorption.
- It is occur naturally in yogurt when sucrose and lactose are present in milk
- Produced on a large scale from a mixture of sucrose and lactose in the presence of the enzyme fructosyltransferase.

36

Lactulose


Synthetic non digestive disaccharide used in the treatment of constipation

Other-oligosaccharides

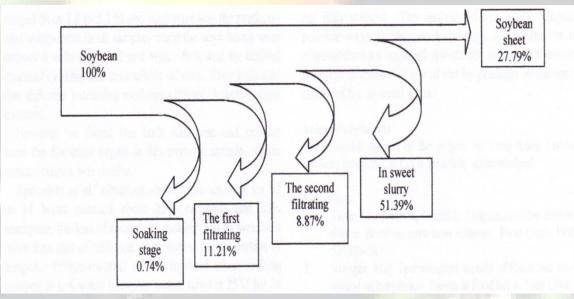
- Xylo-oligosaccharides.
- Soy-oligosaccharides

Xylo-olligosaccharides (XOs)

- Lignocelluloses materials are a source of cellulose and hemicellulose.
- Hemicellulose is rich of xylan that the is the substrate e to the production of xylo-oligosaccharide.

Xylan hydrolysis

Xylo-oligosaccharides (XOs)


- XOs is a non-digestible oligosaccharide (prebiotic)
- It is odorless white powder or yellowish liquid.
- It is water soluble, has low caloric value, good taste with 40% sweetness of cane sugar.
- It has antimicrobial (inhibit microbial growth) and humectants properties.
- It is used in a wide variety of products, such as: functional beverages, sugarless /low sugar confections, dairy products, functional healthy foods, acid products (salad dressing), beer & wine, prebiotic supplements, etc.

Soy-Oligosaccharides

Benefits

Prebiotic, preventing constipation, improving absorption of calcium / other minerals, and reducing the risk of colon cancer.

Soy-Oligosaccharides production process

- •Extraction of oligosaccharides from defatted soybean meal (DSM) with 10 % ethanol in water at 50°c.
- •Ultra filtration for protein removal.
- •Concentration of oligosaccharides.

Summary

- Great concern for health food impact the need for healthier food products.
- Much attention has been paid recently for functional oligosaccharides which promote the growth of *Bifidobacteria* in vivo.
- A number of different oligosaccharides are currently used as low calorie sweeteners.
- One of these oligosaccharides is Galactooligosachharides which represent one way to add value to cheese whey.