

Recycling Leather Wastes in carton Industry

Prof.: Ola A. Mohamed Tanning materials and leather technology National research center

- Leather industry is one of the oldest industries all over the world. Leather is a natural material that, has been used by man for thousands of years.
- Leather industry is one of the polluting industries because; generation of huge amount of liquid and solid wastes, also emits obnoxious smell.
- So research must be direct towards investigate the production of useful materials from different kinds of leather wastes.

>Solid wastes

Solid wastes generated by the leather industry of may be classified as follows:

- 1. Wastes from untanned hides/skins (trimmings, fleshing wastes).
- 2. Wastes from tanned leather (shaving wastes, buffing dust).
- 3. Wastes from dyed and finished leather (trimmings from leather).

Table 1: waste ratios regarding the leather manufacturing process

	ratio for heavy bovine	ratio for light bovine leather	ratio for sheep and goat
	(t / million finished leather)	(t / million m² finished leather)	(t / million m² finished
Unusable WB splits, WB shavings and WB trimmings	171	513	180
Dry leather wastes (trimmings,	27.7	83.2	151.3

Figure 1 : wastes generated by the leather manufacturing – % of world areas

- The word *paper* comes from the ancient <u>Egyptian</u> writing omaterial called <u>papyrus</u>, which was woven from <u>papyrus</u> <u>plants</u>. Papyrus was produced as early as 3000 BC in Egypt, and in ancient <u>Greece</u> and <u>Rome</u>.
- Paper was invented in Ancient China by Ts'ai Lun in AD $^{\circ}$ 105 .
- Global pulp and paper industry dominated by <u>United</u> <u>States</u>, <u>Canada</u>, <u>Sweden</u>, <u>Finland</u> and <u>East Asian</u> countries (such as <u>Japan</u>)
- <u>Australasia</u> and <u>Latin America</u> also have significant pulp and paper industries
- Russia and China expected to be key in the industry's ogrowth over the next few years for both demand and supply

Paper production process

The production process can be divided into 7 subprocesses:

- -Raw materials processes.
- -Wood-yard.
- -Fibre line.
- -Chemical recovery.
- -Bleaching.
- -Paper production.
- protects and recycling.

Dangers of Fire (United States statistic)

- -Someone died in a fire every 3 hrs and someone was injured every 37 minutes.
 - 401,000 home fires.
- -Residential fires caused more than \$6.1 billion in property damage.

What is a Flame Retardant?

- A chemical added to combustible materials to render them more resistant to ignition.
 - Minimizes the risk of fire starting.
- increases the safety of lives and property.

The main families of flame retardants are based on compounds containing:

- -Halogens (Bromine and Chlorine).
- -Phosphorus
- -Nitrogen
- Minerals (based on aluminium and magnesium)
- Others (like Borax, Sb2O3, nanocomposites)

-In this study, leather wastes were grinded to nanosize, treated with flame retardants, and then added as filler during the paper sheets formation.

-Using of these wastes help in reduce their hazards and give an economical benefit to paper making and an effective solution for paper firing.

Table 2; Physical and mechanical properties of blank paper sheet as well as the prepared paper sheet containing different concentrations of unmodified leather, 6, 9, and 12 %.

Type of Tests	Blank	Paper sheet with 6%UML	Paper sheet with 9% UML	Paper sheet with 12% UML
Basis weight(g/m²)	195.55± 4.56	201± 3.97	201.16± 5.4	200.7± 5.09
Tear (mN.m²/g)	0.24± 0.59	0.64± 0.055	0.70± 0.12	0.75± 0.17
Burst (kPa.m²/g)	3.40± 0.22	3.14± 0.44	3.48± 1.49	2.98± 0.26
Thickness (µm)	240± 7.83	238.8± 5.87	281± 28.88	261.8± 8.88
Air permeability (ml/S.cm ² .Pa)	0.12± 0.015c	0.19± 0.027	0.24± 0.029	0.25± 0.014
Opacity (%)	99.41± 0.16	99.31± 1.03	99.62± 0.199	99.2± 0.88
Brightness	43.61± 0.01	44.87± 0.65	45.24± 1.1	44.35± 2.40
Breaking length (km)	4.35± 3.6	5.37± 8.63	5.20± 6.71	5.2± 9.5
Elongation (mm)	1.87± 13.16	2.67± 14.70	2.39± 12.12	2.47± 17.36
E-modules (Gpa)	6.2±3.61	5.44± 7.93	4.66± 4.1	4.94± 5.5

Table 3; Physical and mechanical properties of blank paper sheet as well as the prepared paper sheet containing different concentrations of modified leather (MI), 6, 9, and 12 %.

Type of Tests	Blank	Paper sheet with 6%MLI	Paper sheet with 9% ML	Paper sheet with 12% MLI
Basis weight(g/m²)	195.55± 4.56	198.4± 3.84	193.97± 2.63	199.37± 2.54
Tear (mN.m²/g)	0.24± 0.59	0.71± 0.06	0.65± 0.042	0.79± 0.11
Burst (kPa.m²/g)	3.40± 0.22	3.28± 0.21	2.93± 0.27	2.89± 0.18
Thickness (µm)	240± 7.83	259.8± 4.1	261.8± 3.29	273.4± 5.10
Air permeability (ml/S.cm ² .Pa)	0.123± 0.015	0.243± 0.013	0.293± 0.013	2.8± 8.9
Opacity (%)	99.41± 0.16	97.88± 0.143	99.73± 0.12	99.69± 025
Brightness	43.61± 0.01	44.79± 0.91	44.68± 0.72	44.99± 1.08
Breaking length (km)	4.35± 3.6	5.61± 0.48	4.5± 0.47	4.77± 0.48
Elongation (mm)	1.87± 13.16	2.61± 0.086	2.46± 0.46	2.68± 0.69
E-modules (Gpa)	6.2±3.61	5.23± 0.36	4.78± 0.25	4.3± 0.49

Table 4; Physical and mechanical properties of blank paper sheet as well as the prepared paper sheet containing different concentrations of modified leather (MII), 6, 9, and 12 %.

Type of Tests	Blank	Paper sheet with 6%MLII	Paper sheet with 9% MLII	Paper sheet with 12% MLII
Basis weight(g/m²)	195.55± 4.56	200.28± 4.22	203.38± 3.54	199.37± 2.54
Tear (mN.m ² /g)	0.24± 0.59	0.80± 0.145	0.76± 0.10	0.712± 0.69
Burst (kPa.m²/g)	3.40± 0.22	3.27± 0.16	3.09± 0.178	2.48± 1.11
Thickness (µm)	240± 7.83	259.8± 4.1	261.8± 3.29	273.4± 5.10
Air permeability (ml/S.cm ² .Pa)	0.123± 0.015	0.218± 0.18	0.212± 0.098	0.25± 0.168
Opacity (%)	99.41± 0.16	99.71± 0.112	98.96± 0.86	98.91± 0.17
Brightness	43.61± 0.01	45.83± 0.733	46.69± 0.425	46.65± 0.504
Breaking length (km)	4.35± 3.6	5.27±8.85	5.41± 7.72	5.8± 0.48
Elongation (mm)	1.87± 13.16	2.16±14.92	2.6± 19.13	2.21± 0.435
e-modules (Gue)	6.2±3.61	5.38±5.19	5.33± 4.26	4.77± 0.269

Table, (5): Flame retardant and burning length of the paper sheets

, , ,			
Sample	Flame time (s)	Burning Length (mm)	
Blank	4	150	
Untreated			
3%	6	150	
6%	7	150	
9%	Not ignited	-	
12%	Not ignited	-	
Treated I			
3%	6.5	150	
6%	7	150	
9%	Not ignited	-	
12%	Not ignited	-	
Treated II			
3%	6	150	
6%	8	-	

TGA of a) blank, b) 3% untreated leather, c) 6% untreated leather, d) 9% untreated leather, e) 12% untreated leather

TGA of a) blank, b) 6% treated I, c) 9% treated I, d) 12% treated I

TGA of a) paper sheet as well as, b) 3% treated II, c) 6% treated II, d) 12% treated II

SEM images of : a) Blank paper sheet as well as paper sheet with untreated and treated

Conclusion:

- These results showed that the addition of leather wastes has improved significantly the flammability properties, in the same time didn't have a bad effect on the visual, physical and mechanical properties.
- -This approach can be also extended to various fields of chemistry such as polymers and rubbers.

