

Renal Tumor Biology

Clinical questions to be answered

• Nephroblastoma:

- Will a WT respond to preoperative chemotherapy?

- Glioblastoma:
 - Will a specific patient benefit from adding Dendritic Cell vaccination (DC vaccination) to the standard treatment for glioblastoma?
- NSCLC:
 - Will genetics facilitate the therapy-related clinical decisions
- Prostate Cancer:
 - Which patient needs what kind of therapy at what time?

CHIC

SIOP COG Preoperative Chemotherapy Primary Surgery Stage Stage Histology Histology - Tumor volume (500 ml, GPOH) Tumor weight (550g) Response to treatment Response to treatment (Stage IV) Age (<6m, >16y) Age (2y) - Blastemal Subtype LOH 1p & 16q Both groups do need additional molecular Blastemal Subtype markers for a better risk poor EFS poor EFS stratification **Pediatric Oncology and Clinical Pediatrics** 12th August 2016 Toronto, Canada splo]dv LOH (COG Data)

1.0 -1.0 -**Proportion Relapse Free** Relapse Free 0.9 0.9 0.8 0.8 Proportion No LOH No LOH 0.7 0.7 LOH 1p only LOH 1p only LOH 16q only LOH 16q only LOH both loci LOH both loci 0.6 0.6 4 2 2 3 3 **Time Since Diagnosis (years)** Time Since Diagnosis (years)

Paul Grundy et al., JCO 2015

Pediatric Oncology and Clinical Pediatrics 12th August 2016 Toronto, Canada

Number of relapses by prior treatment group (SIOP WT 2001)

Treatment	No. patients (2yr ~EFS)	No. relapse	% all relapse	No. deaths	% all deaths
VA only	1,785 (90%)	127	38%	16	14%
VA+RT/AVD	603 (88%)	60	18%	13	11%
4 drug arm	225 (75%)	47	14%	29	25%
Stage IV	474 (74%)	103	30%	57	50%
Total	3,087 (87%)	337	100%	115	100%

12th August 2016

Pediatric Oncology and Clinical Pediatrics Toronto, Canada

14

Specific objectives

Hypomodels' Coupling

Coupled Hypomodels	Communication
Morectar model Menor legence menors Registrate as a MATR Registrate as a MATR Regist	Molecular Model -> Oncosimulator <u>Parameter Exchanged:</u> Cell kill probability of chemotherapeutic drugs (ACT+VCR) <u>Type</u> : Sequential coupling
Wilms Oncoinstant Tumor Cell Concentration map the chemothicrapy KCS	Oncosimulator -> Biomechanics <u>Parameter Exchanged</u> : Tumor Cell Concentration Maps Biomechanics->Oncosimulator <u>Parameter Exchanged</u> : Direction of least pressure maps <u>Type</u> : Iterative coupling (step: 10 sim days)
Vacolature Model Model growthard motion transport based an partial decryption that toxore boxes with the sector of the motion toxore boxes	Vasculature->Metabolic <u>Parameter Exchanged</u> : Glucose Concentration Map Metabolic->Oncosimulator <u>Parameter Exchanged</u> : Proliferation Rate Map Oncosimulator->Vasculature <u>Parameter Exchanged</u> : Tumor Cell Populations Map Typelterative coupling (step 10 sim days)
Version of the second s	Preprocessing Tool->Oncosimulator ->Vasculature ->Metabolic ->Biomechanics Parameter Exchanged : Metaimages of tumor area (mhd, raw) <u>Type</u> : : Sequential coupling

12th August 2016

Pediatric Oncology and Clinical Pediatrics Toronto, Canada

Segmentation of the Complete Tumor

boundary

• The graph cut algorithm, which includes a kernel induced segmentation functional is used to extract the complete boundary of the tumor in a 3D image data.

Input image with user selected Segmented tumor boundaries Manually Segmented tumor boundaries

12th August 2016

Pediatric Oncology and Clinical Pediatrics Toronto, Canada

20 most significant miRNA in blood of WT before treatment

MiRNA	Log median Wilms	Log median Control	Log difference	Fold	Ttest	Ttest adj	AUC
hsa-miR-20a	10.124	12.929	-2.805	-6.988	7.01E-012	5.94E-009	0.977
hsa-miR-20b	10.057	12.410	-2.353	-5.108	2.49E-011	1.05E-008	0.984
hsa-miR-766	10.079	8.494	1.585	3.000	2.63E-009	3.29E-007	0.033
hsa-miR-144*	7.994	9.524	-1.531	-2.889	2.40E-009	3.29E-007	0.953
hsa-miR-144	8.967	11.506	-2.540	-5.815	2.71E-009	3.29E-007	0.954
hsa-miR-106a	11.506	13.639	-2.132	-4.385	2.14E-009	3.29E-007	0.950
hsa-miR-1246	6.007	2.737	3.270	9.649	1.36E-009	3.29E-007	0.059
hsa-miR-197	11.205	8.888	2.317	4.984	4.33E-009	4.59E-007	0.055
hsa-miR-224	6.403	3.745	2.658	6.310	5.20E-009	4.90E-007	0.043
hsa-miR-18a	9.168	11.205	-2.037	-4.104	6.75E-009	5.72E-007	0.962
hsa-miR-93	10.830	12.766	-1.936	-3.825	8.50E-009	6.55E-007	0.935
hsa-miR-17	11.839	13.273	-1.434	-2.702	1.20E-008	8.48E-007	0.962
hsa-miR-18b	7.044	8.901	-1.856	-3.621	2.02E-008	1.32E-006	0.982
hsa-miR-126	8.320	11.425	-3.104	-8.601	3.38E-008	2.05E-006	0.944
hsa-miR-520d-3p	4.497	2.134	2.363	5.145	4.13E-008	2.33E-006	0.061
hsa-miR-1305	4.877	6.898	-2.021	-4.058	5.14E-008	2.60E-006	0.966
hsa-miR-373	4.819	1.976	2.843	7.173	5.22E-008	2.60E-006	0.064
hsa-miR-106b	13.004	14.104	-1.100	-2.143	6.24E-008	2.94E-006	0.938
hsa-miR-1204	5.360	3.048	2.312	4.967	1.21E-007	5.42E-006	0.078
hsa-miR-374a	6.473	8.483	-2.010	-4.029	1.39E-007	5.91E-006	0.934
The 20 most significant miR ny negative values, up-regula	NAs when compari ated fold-change is	ng Wilms patient indicated by posi	s before therapy to itive values.	healthy controls	. Down-regulated f	old-change is indica	ted
12 th August 2016		Pe	diatric Oncology Toront	and Clinical I o, Canada	Pediatrics		

SOMs: miRNA landscape in WT

Self Organizing Maps:

- expression data of 1204 miRNAs merged to 400 "meta"miRNAs
- visualization of different expression profiles in WT subtypes
- in silico pathway analysis to identify underlying cancer pathways

Application to Nephroblastoma

Kidney – mechanical properties

	E [kPa]	v
Renal Cortex	4.7	0.45
Renal medulla	7.7	0.45
Renal Hilum	3.4	0.45
	Renal c	ortex
Hilum	R	enal medull
Renal artery		-Renal pap
Renal vein		Renal
Renal pelvis Ureter		Renal
Major calyx)	Fibrous

Simulation assumptions

• Mechanical Tissue Properties:

	E [kPa]	ν
Healthy kidney (avg)	5.3	0.45
Nephroblastoma	20.0	0.45
Spine	10000.0	0.3
Other tissue	5.0	0.45

Boundary Conditions: ٠

 Nodal positions of domain boundary fixed [domain boundary = margin of 'other tissue' surrounding kidney & tumour]

12th August 2016

splo]dy CHIC

Clinical Research Application Framework (CRAF)

- The Clinical Research Application Framework ("CRAF") is the central component to support the clinicians to perform CHICenabled clinical research in their premises
- CRAF coordinates the functionality of other CHIC components, such as the Data Upload tool for uploading patient data to the CHIC cloud, and the Visualization and image processing tools

12th August 2016

Pediatric Oncology and Clinical Pediatrics Toronto, Canada

36

