About OMICS Group

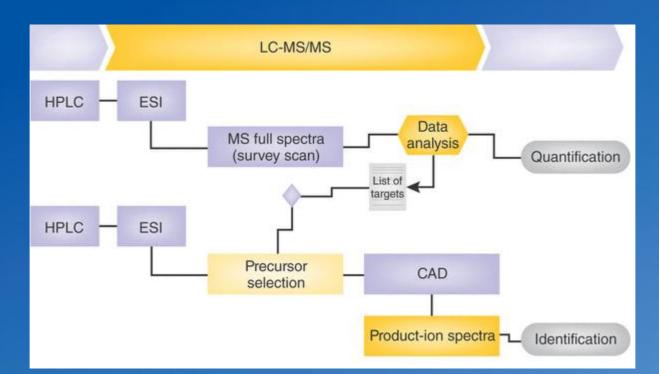
OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 500 online open access <u>scholarly journals</u> in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS International also organizes 500 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 500 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS International has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

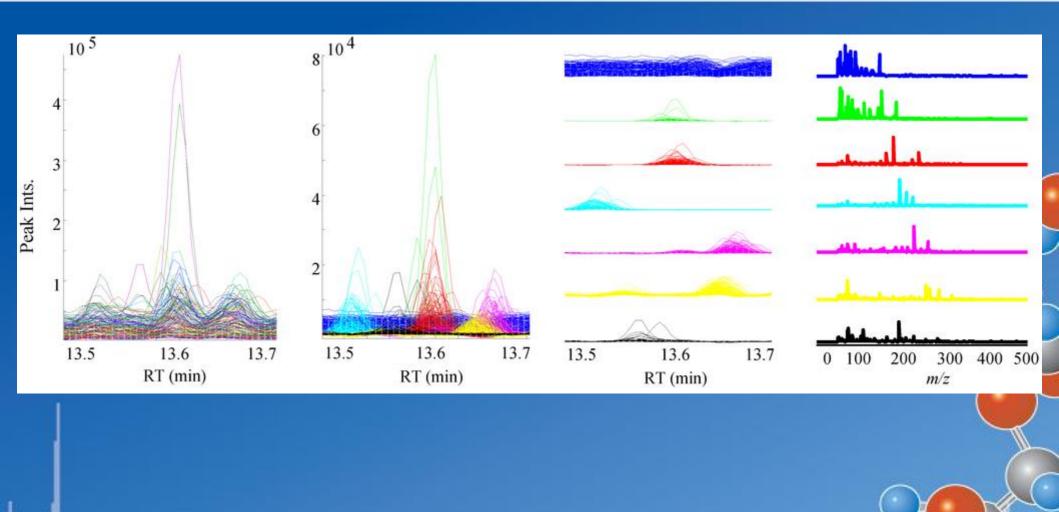
SimMet: Informatics Tool for Automating LC-MS and MS/MS Based Large Metabolomics Data Processing and Analysis


By

Sanjib N. Meitei, Ph.D. Chief Scientific Officer, PREMIER Biosoft at

4th International Conference and Exhibition on Metabolomics and System Biology, Philadelphia

Biosoft

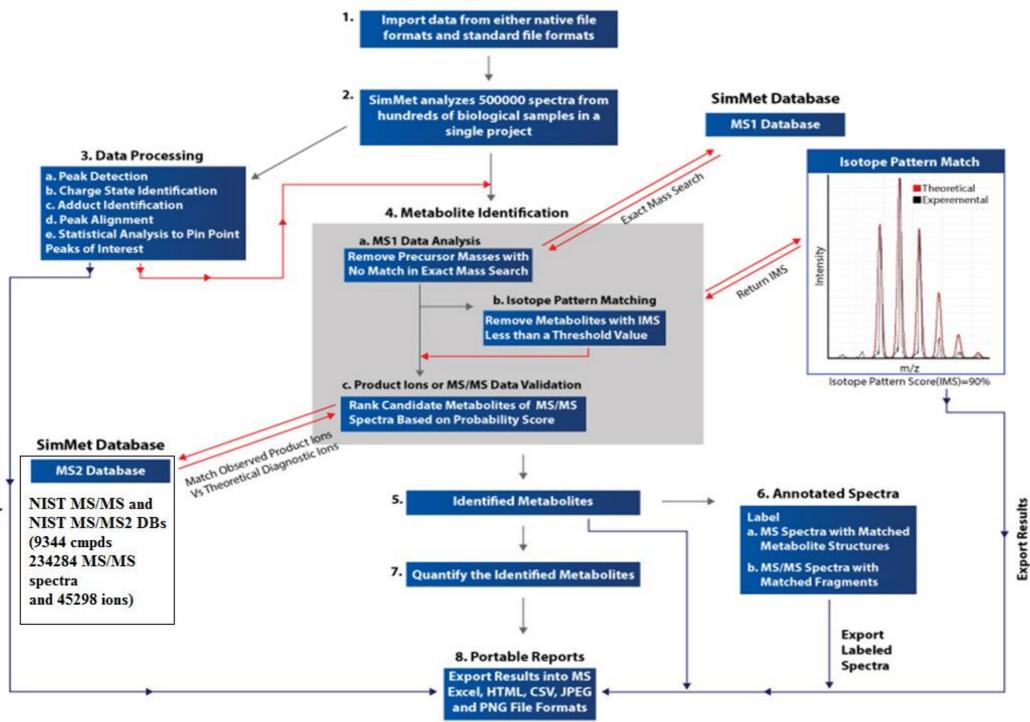

Leading Analytical Platform Applied for Metabolite Profiling

Liquid Chromatography - Mass spectrometry (LC-MS) Reason: High sensitivity and requirement of low sample amounts

ER Biosoft

Challenge: Large Data Sets

Typical Metabolomics Data Analysis Pipeline


- 1. Generate peak lists using a data processing tool.
- 2. Metabolite profiling using Database search tool.

3. Validate metabolites using MS/MS data pattern matching or *in silico* fragment matching tools.

- 4. Performing statistical analysis for identifying differential metabolites.
- 5. Pathways analysis for the identified metabolites.

Lack of a comprehensive software tool to perform all the steps mentioned above has been one of the bottle necks. In order to address this challenge, we develop SimMet software.

SimMet Schema

Export Results

SimMet Software Addressing Some of The Challenges

S.No.	Challenges	SimMet
1.	Generation of a large number of LC-peaks from raw data	Molecular feature finding algorithm that combines peaks from adducts and higher isotopes
2.	Significant number of peaks corresponding to noise	Remove noise based on shape of the LC-peaks and data from LC-MS runs of blanks, QCs, technical replicates of the biological samples
3.	Missing peaks	Extracting raw data corresponding to a peak that are observed in other technical replicates
4.	Accurate identification of metabolites using MS/MS data	NIST MS/MS Database (having 234284 spectra, 9344 compounds and 45298 ions) and proprietary compound identification algorithm and spectral pattern matching algorithm

Application of Software (Methods)

MS: Compact (Q-TOF MS, Bruker Daltonik GmbH). ESI(+) with MS and autoMS/MS modes. Scan range: m/z 75-1000. Acquisition rate: 3 Hz.

HPLC: U3000 RSLC(Thermo Scientific). Column: 50 x 2.1 mm BEH C18, 1.7 um column (Waters) Column temp. 30 °C. Flow rate: 0.45 mL/min. Injection volume: 5 μ L. Mobile phase: A = H2O, B = MeOH (each containing 0.1% HCOOH). Gradient: linear gradient 2 - 98% B in 5 min, hold 1 min.

Sample: Capsules of 13 different types of coffee (espresso and lungo varieties from different blends and geographical regions) were extracted using 35 ml of water on a standard coffee capsule machine (Krups XN 301T Nespresso Pixie). Two replicates of each type were prepared. Extracts were diluted 1:50 in water prior to analyzing 3 replicates for each extract by UHPLC-MS.

R Biosoft

Data Processing: SimMet software tool (www.premierbiosoft.com)

Coffee Samples

13 Coffee Samples

											\downarrow	\checkmark
Ristre	etto Arpe	ggio Roma	Livanto	Capriccio	Vollute	o Cosi	Dulsao	Rosabay	va Indriya	Finezzo	Vivalto	Fortissio
										Lungo	Lungo	Lungo
\checkmark												
1_2_GD	2_01_336.d	3_1_GD5_01_3	339.d	5_1_GB8_01_32	5.d	7_1_GD4_01_	_338.d	9_1_GB3_01_		\checkmark		↓
1_2_GD	2_01_384.d	3_1_GD5_01_3	388.d	5_1_GB8_01_37	3.d	7_1_GD4_01_	_386.d	9_1_GB3_01_	368.d 11_	1_GA4_01_312.d	13_1_	_BA5_01_357.d
1_2_GD	2_01_433.d	3_1_GD5_01_4	436.d	5_1_GB8_01_42	2.d	7_1_GD4_01_	435.d	9_1_GB3_01_	416.d	1_GA4_01_360.d	13_1_	_BA5_01_405.d
	4_01_329.d								11	1_GA4_01_408.d	13 1	_BA5_01_454.d
	4_01_378.d	3_2_GA6_01_3		5_2_BA1_01_35		7_2_GB2_01_		9_2_GA7_01_	11	2_BA6_01_358.d		GB5_01_322.d
1_3_GC4	4_01_426.d	3_2_GA6_01_3	362.d	5_2_BA1_01_40	1.d	7_2_GB2_01_	_367.d	9_2_GA7_01_	363.d			A
		3_2_GA6_01_4	411.d	5_2_BA1_01_44	9.d	7_2_GB2_01_	_415.d	9_2_GA7_01_	412.d	2_BA6_01_406.d	13_2_	_GB5_01_370.d
									↓ 11_	2_BA6_01_455.d	13_2	_GB5_01_418.d
	2_1_GC2_01	l_327.d	4_1_GC8_01_	_334.d	6_1_GE6_01_	_349.d	8_1_GD3_01	_337.d 10_	2_BA2_01_353.d	10	4 0 4 2 04 2	
	2_1_GC2_01	l_375.d	4_1_GC8_01_	_382.d	6_1_GE6_01_	_397.d	8_1_GD3_01_	385.d 10	2_BA2_01_402.d		1_GA3_01_3 [,]	
	2_1_GC2_01	1 424.d	4_1_GC8_01_	430 d	6_1_GE6_01_	446.d	8_1_GD3_01			12_1	1_GA3_01_3	59.d
									2_BA2_01_450.d	12_1	1_GA3_01_4	97.d
	2_2_GD1_01		4_2_GD7_01_		6_2_GE8_01_		8_2_GA8_01_	_316.d 10_	3_GB4_01_320.d	12_:	2_GE2_01_3	15.d
	2_2_GD1_01	1_383.d	4_2_GD7_01_	_390.d 6	6_2_GE8_01_	_400.d	8_2_GA8_01	_364.d 10_	3_GB4_01_369.d	1	2_GE2_01_3	
	2_2_GD1_01	1_432.d	4_2_GD7_01_	_438.d	6_2_GE8_01_	_448.d	8_2_GA8_01_	_413.d 10_	3_GB4_01_417.d		\sim	
										12_:	2_GE2_01_4	1.0

SimMet Data Analysis Workflow

Raw Data: Bruker's native files viz., .fid, .baf and .yep. profile data or line data types are supported. Other files: SCIEX's .wiff, Thermo's .raw, .zXML, .mzData.

M

Model Experimental Design Through Intuitive Interfaces

A software-wizard that guides users to model experimental design by assigning raw data files to their respective biological/technical replicates, assign color code, shape and custom description for each of the biological/technical replicates.

Select (* Raw Files	Sample Name:								
C Peaklists	Arpeggio		File Name	Sample Name	Description	Amount	Polarity	Color	Shape
File Name	Amount of Sample (µg/mol):	>>	2_1_GC2_01_327.d_	Arpeggio	Replicate 1	1.0	Positive		• •
	1.0	-	2_1_GC2_01_375.d_	Arpeggio	Replicate 2	1.0	Positive		• •
	Polarity		2_1_GC2_01_424.d_	Arpeggio	Replicate 3	1.0	Positive	•	• •
2_1_GC2_01_375.d_P92	Positive 👻		2_1_GC2_01_424.d_	Arpeggio	Replicate 4	1.0	Positive	•	• •
2_1_GC2_01_424.d_P93			2_1_GC2_01_424.d_	Arpeggio	Replicate 5	1.0	Positive	_	•
2_1_GC2_01_424.d_P33			2_1_GC2_01_424.d_	Arpeggio	Replicate 6	1.0	Positive		• •
2_1_GC2_01_424.d_P93			3_1_GC2_01_424.d_		Replicate 1	1.0	Positive	•	•
3_1_GC2_01_424.d_P93 3_2_GD1_01_335.d_P94 💌 1		Edit colors	4						
•	Colors		Data Normalization					Lock	Parameters
Peak Detection & Picking	Align Peaklists			I ✓ Me	tabolite Identification		l ⊽ st	atistical Analysis	
▼ Template Name Compact Qq-TOF ▼	Template Nam	. Com	pact Qq-TOF 🔻	V	Template Name	Compact Qq-TOF	▼	PCA	
), redeninger frederinger 7								PLS-DA	
Settings	Settings	Aligne	ed Peaklist Name Coffee_Co	mpare	Settings			Hierarchical Cluste	r Analysis
		272						1	1
							C	K Cancel	Help

Model Experimental Design Through Intuitive Assistance Dialogs

Define Data Analysis Pipeline: Peak detection and picking, feature detection, retention time alignment, metabolite identification using MS and MS/MS database search, and statistical analysis such as Principal Component Analysis (PCA), Partial Least Square Discriminant Analysis (PLS-DA), Hierarchical Cluster Analysis etc.

Data Normalization: Select proper data pretreatment method.

	Data Norm	alization, Ce	entering, Scalir	ng & Transformation	×
- Select Techni	ique: Response	(^ Area	(€ Int	ensity	
~	Select a data normalization technique	,	Data centering/scalin	g	
	 None Normalization by internal standards 	с с	None Mean Centering		
	O Normalization by total response sum	G	Autoscaling	(mean-centered and divided by the standard deviation of each variable)	
	C Normalization by median	C	Pareto Scaling	(mean-centered and divided by the square root of standard deviation of each variable)	
	C Normalization by manual sample wise factors	C	Range Scaling	(mean-centered and divided by the range of each variable)	
~	Normalization by a reference Sample Roma		VAST Scaling	(Variable Stability: Autoscaling multiplied by inverse of coefficient of variation)	
	,		Level Scaling	(mean-centered and divided by mean of each variable)	
▼	Data transformation				
	C None	C Log tra	nsformation	O Power transformation	
				OK Cancel Help	

Raw Data Processing Steps

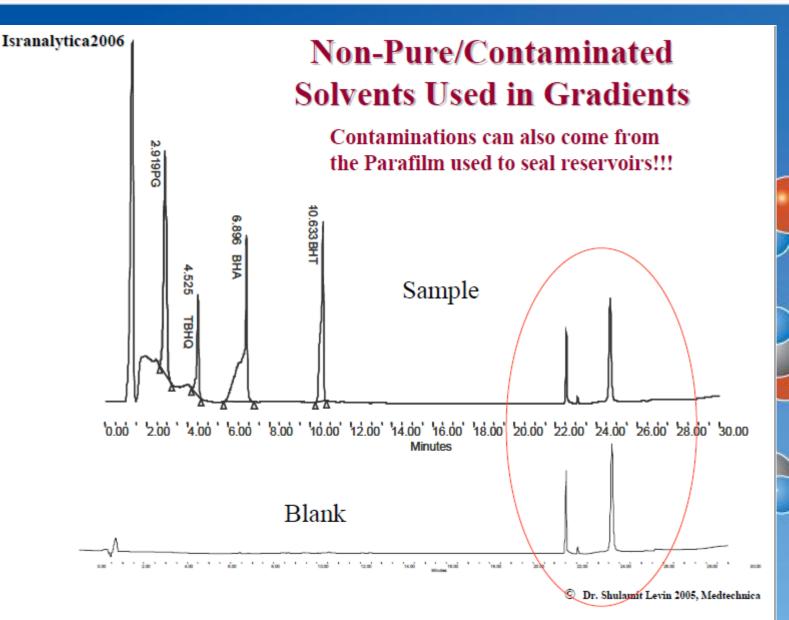
Generate Peaklists in Batch: Peaks detected in LC timescales for hundreds of raw data files in batch mode.

Peak Deconvolution: Separate isomeric/isobaric compounds by subjecting Extracted ion chromatogram (XIC) data into second derivative Savitzky-Golay smoothing.

Data Reduction: Combines all ions belonging to the same compound (peaks corresponding to isotopes, charge states, adducts and common neutral losses such as, NH4, Na, Li, K etc.)

Compound ID: A unique ID for the detected compound. All MS/MS scans corresponding to ions of this ID are also clustered.

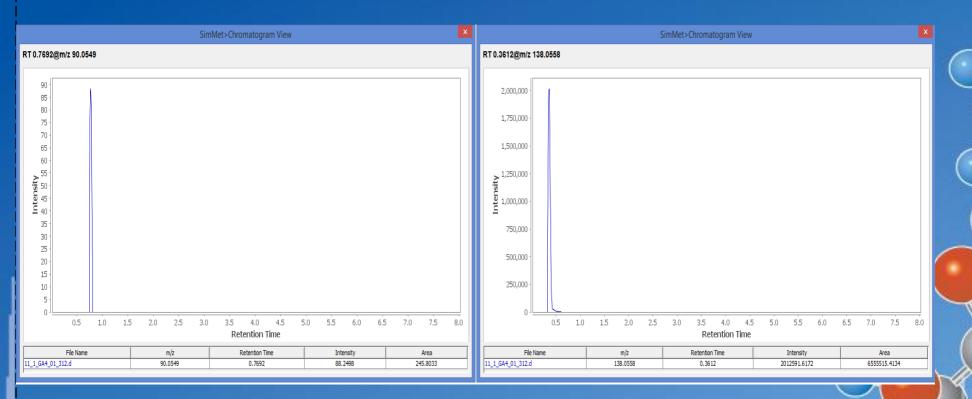
Retention Time Alignment: Either RANSAC or Gale-Shapely techniques.


Review Peaks: Options to remove unwanted peaks, fetch intensity from raw data files for missing peaks.

Removing Noise Using Blank Samples

1. LC-MS run of blank extracts subjected to peak detection and picking and then aligned based on retention time with other sample peaklists.

2. All the peaks that are aligned with peaks detected in the blank extracts are removed from further analysis.


Hence, unwanted peaks are removed without increasing the risk of removing compounds that have low abundances with poor signal to noise ratios.

Biosoft

Ability to Detect Metabolites with Very Low Concentration

Figures below show the XICs of the low concentrated alanine that was detected with an intensity of 88 cts versus the trigonelline peak that has an intensity of 2012591 cts. The ratio 2012591/ $88 = 2.2 \times 10^4 > 4$ orders of magnitude.


This observation also demonstrates the unique capability of the compact QTOF to detect target compounds on an LC timescale across a dynamic range.

HER Biosoft

Metabolite Differential Analysis

Principal Component Analysis: Aligned peaklists from 13 different coffee extracts

PCA Score Plot: The 2 "biological" and 3 technical replicates for each sample type (highlighted by using the same color and symbol) formed clusters in the PCA scores plot as shown in figure below.

PCA Loadings Plot: Showing analytes with m/z values 195.088 and 138.0552 mainly contributing to the separation of samples in the PCA scores plot . As m/z 195.088 corresponds to caffeine, we removed it from the model and re-run the PCA data analysis. Two compounds labeled X with m/z value 124.0394 and Y with m/z value 138.0561 are detected to have a high content in strong and weak coffee samples, respectively .

Metabolite Identification

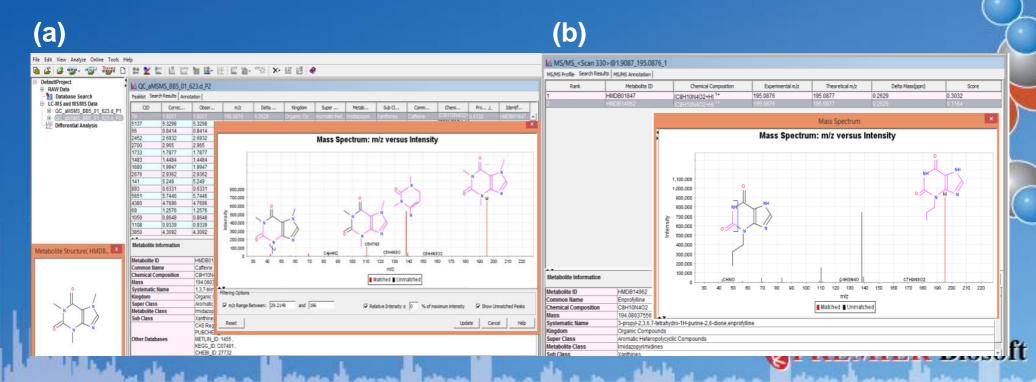
Basics of Compound Identification: Exact mass database search, and matching of expected and observed fragments in batch mode.

Identify Candidate Metabolites: Search metabolites with precursor m/z as the search predicate and use 5ppm as the tolerance.

Identify the Most Likely Structure of the Candidate: Standard MS/MS spectra for all the candidates are matched to the measured spectra with user specified tolerance. A proprietary ranking algorithm differentiates isobaric compounds based on the number of matched observed ions and intensities of those matched ions.

Scoring Mechanism: A propriety algorithm that assigns penalty for fragment ions that can not be matched to database ions wherein the amount of penalty is decided based on the relative intensity of the non interpreted ions. The higher a penalty a structure receives, the lower the likelihood that the structure corresponds to the MS/MS spectrum.

Portable Reports: MS excel, CSV and HTML files.


Identification of Caffeine using MS and MS/MS Data

Goal: Test SimMet software's ability to accurately identify metabolite using MS and MS/MS data

Caffeine MS/MS Data: The QC sample data subjected into SimMet's MS and MS/MS database search workflow.

Compounds Identified: Caffeine structure was correctly identified and ranked 1st. Enprofylline was the 2nd ranked structure.

MS/MS Annotation Showing Fragmentation Patterns of IDed Compounds: Caffeine (Figure (a)) enprofylline in Figure (b). It is evident that many important diagnostic ions such as m/z 138, 110, 42 etc. are left unmatched in (b).

Identify Compounds X and Y Observed in PCA Score Plot

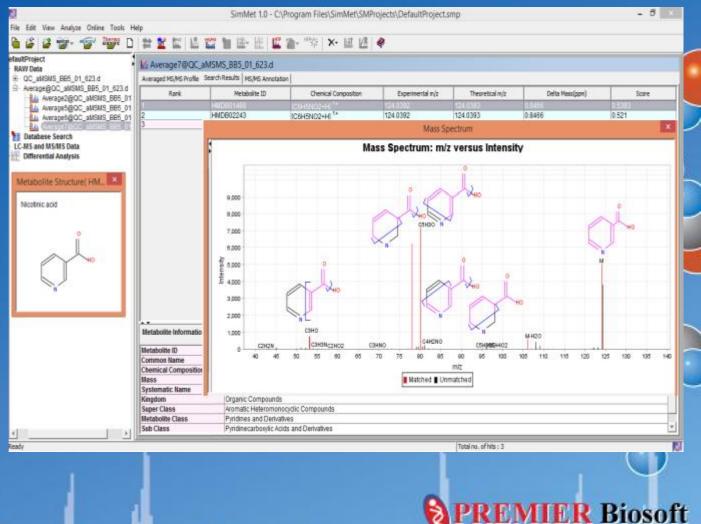
Candidate Structure: Exact mass search with 5 ppm tolerance in metabolite databases such as HMDB, YMDB, Metlin.

Compounds ID using Minimum Delta Mass Only: Compounds X tentatively identified as Isonicotinic acid and compound Y as 4-Fluoro-L-threonine

MS/MS Data: We use MS/MS data from QC sample.

Averaging MS/MS scans for the Compound X: The MS/MS scans observed between 0.4-0.6 minute, the LC-timerange in which compound X is eluting.

		Average S	icans			
Average Scans						
C MS Data		¢	MS/MS Data			
Deafle Name OC all	NC DDE 01 633					
Profile Name: QC_aMS	MS_BB5_01_623					
Scan Name	Scan No.	Precursor m/z	Charge State	Intensity	Retenti	Г
QC_aMSMS_BB5_0	74	124.0389	1	7500.0	25.884	Г
QC_aMSMS_BB5_0		124.039	1	4706.0	25.175	~
QC_aMSMS_BB5_0	90	124.0392	1	69797.0	31.424	~
QC_aMSMS_BB5_0	86	124.0392	1	102263.0	30.044	2
C Scan No:	to 24 to 38	5 (secs.)	Precursor	m/z: 124.0	13 to 12	4.05
C Scan No: Retention Time: Ignore the row for Data Pre-processing Op	24 to 3				13 to 12	
Retention Time:	24 to 3 r which Retention ptions	n Time/Precursor m	ı/z is not available	Filter	Defa	
C Scan No: Retention Time: Ignore the row for Data Pre-processing Op m/z Options	24 to 30 r which Retention ptions	Time/Precursor m	ı/z is not available	(decimal poir	Defa	
C Scan No: Retention Time: Ignore the row for Data Pre-processing Op m/z Options Consider m/z pea Intensity Options	24 to 30 r which Retention ptions aks observed in a ame m/z within re	I the samples	ı/z is not available m/z Precision	(decimal poir	Defau	


Identify Compounds X and Y Observed in PCA Score Plot

MS/MS based Identification of Compound X:

1st Ranked Structures: Nicotinic acid, 2nd Ranked: Picolinic acid and 3rd Ranked: Nitrobenzene.

MS/MS spectra annotation of compound X: As shown in figure below.

Using the workflow described here, the molecular formula for compound Y was identified as C7H8NO2 ([M+H]⁺). In-silico fragmentation identified the analyte to be trigonelline. The ID of compound X as nicotinic acid and compound Y as trigonelline was confirmed by comparison to the authentic standards.

Conclusion

SimMet, a high throughput sophisticated software for comprehensive LC-MS and MS/MS metabolomics data analysis, enables accurate detection of peaks, quick pinpointing of relevant compounds contributing to coffee intensity, identification of two selected target compounds which are characteristic for weak and strong coffee samples.

The complete data analysis of the data set could be performed on a single software platform.

This reliable proposal of compound identities helped to save analysis time and money spent for purchasing multiple references in order to confirm the identity of the target compounds.

References

- 1. Castrillo et al. Phytochemistry. 2003; 62: 929–37.
- 2. Theodoridis et al. Mass Spectrom Rev. 2011; 30: 884–906.
- 3. Bajad et al. Methods Mol Biol. 2011; 708: 213–28.
- 4. Xia et al. Nucl. Acids Res. 2012; 37: W652-660.
- 5. Gowda et al. 2014; 86 (14): 6931-6939.
- 6. Eric et al. Nat Rev Genet. 2010; 11(9): 647-657.
- 7. Berg et al. BMC Genomics. 2006; 7:142.
- 8. Fischler and Bolles. Comm Of the ACM. 1981; 24:381-395.
- 9. Cleveland and Devlin. J Am Stat Assoc. 1998; 83(403):596-610.
- 10. Pluskal et al. BMC Bioinformatics. 2010; 11:395.
- 11. Voss et al. Bioinformatics. 2011; 27(7):987-93.
- 12. Bruker Application Note # LCMS-79

Acknowledgement

i.A. Dr. Aiko Barsch Market Manager Metabolomics Bruker Daltonik GmbH (Bremen) Email: aiko.barsch@bruker.com

And Development Team, PREMIER Biosoft

Let Us Meet Again

We welcome you all to our future conferences of OMICS International

Please Visit:

www.metabolomicsconference.com

www.conferenceseries.com

http://www.conferenceseries.com/clinical research-conferences.php

and the second state

ER Biosoft