Main Motivations	Wind Turbine	Control	SimulationsConclusions and Future Works
	00 00	0 00000	

Advanced Control for Wind Turbine Grid Connection Requirements

Nicol`o Gionfra Supervisors: Guillaume Sandou, Houria Siguerdidjane EDF actors: Damien Faille, Philippe Loevenbruck

July 28-30, 2016 Berlin, Germany

World Congress and Exhibition on Wind & Renewable Energy

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works 00 00000 00000 00000 A New Grid Code

Power Curtailment

Typically imposed by the GSO. It is a valid alternative to grid reinforcement. Modified power reference: $P_{ref} = sat_{P_{max}}(P)$

Primary frequency control

Participation at *primary* reserve for frequency control (especially downward). Modified power reference: $\Delta P = k_1 \Delta \omega$

Artificial Inertia

Reproduce the natural behavior of synchronous generators connected to the grid: $J\dot{\omega} = T_{mec} - T_{elec}$ Modified power reference: $\Delta P = k_2 \frac{d\omega}{dr}$

・ロト・(部)・(三)・(三)・(二)
 ・(3)/22

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works ••• ••• ••• ••• ••• Model and Classic Mode of Operation ••• ••• ••• Wind Turbine Model ••• ••• •••

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works Image: Simulation Classic Mode of Operation Image: Simulation Science of Control Image: Simulation Science of Science of Simulation Science of Science of

MPPT control at low wind speed, with constant ϑ . Power Limiting (PL) at high wind speed, by acting on ϑ .

Tipically two loops of PI control:

 ω_r controlled via $T_{g,r}$, and by inverting the static relation in the figure.

Power limiting via ϑ , only activated when necessary.

Power curves for $\vartheta = 1^{\circ}$ and parametric wind.

▲□▶ ▲御▶ ▲重▶ ▲重▶ 重 少Qペ 5/22

Main Motivations	Wind Turbine ○○ ●○	Control 0 00000	SimulationsConclusions and Future Works		
Wind Turbine Control Objectives					
Control Objectives					

Main objective
Track a general power reference $P_e^*(\cdot)$ satisfying $0 \le P_e^*(t) \le \min(P_{MPPT}, P_{e,n}) \forall t \ge 0$, given by an upper control level, in particular, for:
Downward active power reserve.

Temporary maximum deliverable power constraints.

<ロ> < 部 > < 言 > < 言 > 言 の Q @ 6/22

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works 0 0 0 0 0 Wind Turbine Control Objectives 0 0 0 0 Choice of a Particular Reference 0 0 0 0

For a given P^*_e there might exist multiple state choices to achieve it:

State choice that maximizes the stored kinetic energy (Z ertek et al. (2012)) $(\omega_r^*, \vartheta^*) = \arg \max_{\omega_r, \vartheta} \omega_r$ subject to $P_e^* = P_r(\omega_r, \vartheta, v)$ $\omega_{r,min} \le \omega_r \le \omega_{r,n}$ $\vartheta_{min} \le \vartheta \le \vartheta_{max}$

So that we get: $\Delta W_k \cong \frac{1}{2} J_r(\omega_{r,up}^2 - \omega_{r,MPPT}^2)$

> < □ > < 큔 > < 큔 > < 프 > < 프 > < 트 > 트 - 의익은 7/22

Main Motivations	Wind Turbine	Control ● ○○○○○	SimulationsConclusions and Future Works
Brief Literature Review			

Some non linear (NL) controllers

(Thomsen (2006)),(Boukhezzar and Siguerdidjane (2011)), (Boukhezzar et al. (2007)): NL controllers conceived for either MPPT *or* Power Limiting mode of operation.

(Burkart et al. (2011)): NL controller for the whole operating envelope, but difficult to adapt to the general power reference tracking problem.

▲□ > < 클 > < 클 > < 클 > ▲ 클 > ● 의 < @
 8/22

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works Simulations SimulationsConclusions and Future Works SimulationsConclusions and Future Works FL + MPC Step

Main steps Choice of the change of coordinates (considering the output $y = \omega_r$): $\xi = col(\omega_r \quad \dot{\omega}_r \quad \omega_g \quad \delta \quad T_g)$ Non linearities are concentrated in: $\dot{\xi_2} = \alpha(\xi, \vartheta, v, \dot{v}) + A_2\xi + \beta(\xi, \vartheta, v)\vartheta_r$ Choice of feedback linearizing input: $\vartheta_{r,FL} \vartheta_4 \vartheta_r = \frac{1}{\beta(\xi, \vartheta, v)}(-\alpha(\xi, \vartheta, v, \dot{v}) + v_\vartheta)$ where v_ϑ is left as a degree of freedom.

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works FL + MPC Feedback Linearization Step

Main steps Choice of the change of coordinates (considering the output $y = \omega_r$): $\xi = col(\omega_r \quad \dot{\omega}_r \quad \omega_g \quad \delta \quad T_g)$ Non linearities are concentrated in: $\dot{\xi_2} = \alpha(\xi, \vartheta, v, \dot{v}) + A_2\xi + \beta(\xi, \vartheta, v)\vartheta_r$ Choice of feedback linearizing input: $\vartheta_{r,FL} \ \vartheta_r = \frac{1}{\beta(\xi, \vartheta, v)}(-\alpha(\xi, \vartheta, v, \dot{v}) + v_\vartheta)$ where v_ϑ is left as a degree of freedom.

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works SimulationsConclusions SimulationsConclusions SimulationsConclusions FL + MPC Step

Main steps

Choice of the change of coordinates (considering the output $y = \omega_r$):

 $\xi = col(\omega_r \quad \dot{\omega}_r \quad \omega_g \quad \delta \quad T_g)$

Non linearities are concentrated in:

$$\dot{\xi}_2 = \alpha(\xi, \vartheta, v, \dot{v}) + A_2\xi + \beta(\xi, \vartheta, v)\vartheta$$

Choice of feedback linearizing input:

$$\vartheta_{r,FL}$$
 $\frac{3}{4}\vartheta_r = \frac{1}{\beta(\xi,\vartheta,v)}(-\alpha(\xi,\vartheta,v,v)+v_\vartheta)$

where v_{ϑ} is left as a degree of freedom.

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works Since Flet Simulations Sconclusions and Future Works Simulations Sconclusions and Future Works FL + MPC Simulations Sconclusions and Future Works Simulations Sconclusions and Future Works Feedback Linearization step Simulations Sconclusions and Future Works

<□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>

Control Main Motivations Wind Turbine SimulationsConclusions and Future Works 0 00000 FL + MPC **Avoiding Singular Points**

25 30

13/ 22

Main Motivations	Wind Turbine	Control ○ ○○○●○	SimulationsConclusions and Future Works
FL+ мрс MPC Step			

Optimization problem
At each time step <i>j</i> , MPC solves the following problem P:
N _h - 1
$\min_{\{u_{MPC}\}} "\tilde{\xi}(k)"_{Q_{\xi}} + "\tilde{u}_{MPC}(k)"_{R}^{2} + "\Delta u_{MPC}(k)"_{R_{\Delta}}^{2} + "\tilde{\xi}(N_{h})"_{P}^{2}$
subject to
• discretization of $\dot{\xi} = A\xi + Bu_{MPC}$, $\xi(0) = \xi(j)$
• $\beta(\zeta, \vartheta, v) < 0$
• $\vartheta_{min} \leq \vartheta_{r,FL} \leq \vartheta_{max}$
• $0 \le \omega_r T_g$, and other system constraints
Note: constraints are linearized at each j to make the problem <i>convex</i> , (quadratic)

Main Motivations	Wind Turbine 00 00	Control ○ ○○○○●	SimulationsConclusions and Future Works o o o o	
FL + MPC				
Overall Controller				

where $y = col (\omega_r \quad \omega_g \quad \vartheta \quad T_g)$

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works Simulations SimulationsConclusions and Future Works SimulationsConclusions and Future Works Conventional Operating Mode SimulationsConclusions and Future Works MPPT and Power Limiting

Main Motivations	Wind Turbine 00 00	Control 0 00000	SimulationsConclusions and Future Works
Tracking a General Pow			
De-loaded	Mode		

<ロ > < 部 > < 臣 > < 臣 > 三 の Q @ 18/22

Main Motivations	Wind Turbine	Control 0 00000	SimulationsConclusions and Future Works
Tracking a General Pov De-loaded	Mode		

Surplus of stored kinetic energy during the de-loaded mode of functioning:

< □ > < 큔 > < 흔 > < 흔 > < 흔 → 트 · · ○ ○ ○ 19/22

Main Motivations Wind Turbine Control SimulationsConclusions and Future Works 00 00000 00000 00000 Robust Analysis Montecarlo Simulation Image: Simulation

100 simulations on a 600s time basis.

We let D_s , K_s , J_r , J_g span an interval of $\pm 20\%$ of their nominal value, according to a uniform distribution of probability.

The system is excited by a wind speed signal whose average is 12m/s.

Main Motivations	Wind Turbine	Control o ooooo	SimulationsConclusions and Future Works	

Conclusions

The proposed control enables tracking of a general power reference. It

allows to control a wind turbine in the whole operating envelope. It

showed better performance with respect to a PI control.

Montecarlo simulation showed a certain inherent degree of robustness.

Future Works

Application for mechanical stress reduction via Individual Pitch Control.

Integration at the wind farm level.

Main Motivations	Wind Turbine	Control o ooooo	SimulationsConclusions and Future Works

Thanks for your attention!

▲□▶ ▲@▶ ▲ 분▶ ▲ 분 ▶ 분 - 의직 (~ 22/22