About OMICS Group

OMICS Group is an amalgamation of <u>Open Access Publications</u> and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 700+ online open access <u>scholarly journals</u> in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 1000+ International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 700+ open access journals and conducts over 500 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 1000+ conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai. Systematic Approach to Development of Aqueous Drug Formulation and Drug-Device Combination Injectable Products & Challenges

Presented By:

Neervalur V. Raghavan, Ph.D. President, RAGS PHARMA CONSULTING, LLC

August 19, 2015

OMICS Conference August 17-19, 2015 Chicago IL, USA

Parenterals & Injectables

LECTURE OUTLINE

Introduction

- Injectable products, Drug-Device Combination products

Physico-Chemical Aspects of Drug molecules

- Solubility profile in aqueous and mixed solvent systems
- pH vs solubility profile in aqueous formulations (buffer, tonicity-adjusting agents, antioxidants, solubilizing agent, preservatives)
- *pH rate profile of drug and chromatographic profile, potential for particulate matter*

RAGS PHARMA CONSULTING

LECTURE OUTLINE

Selection of Parenteral Dosage Forms

- Parenteral product categories –
- Decision Tree for selection of a dosage form for a parenteral drug
- Scientific considerations in selection of a parenteral dosage form
- Preformulation
 - Drug Solubility
 - Drug Stability

RAGS PHARMA CONSULTING

LECTURE OUTLINE

- Formulation Optimization
 - Approaches to minimize drug degradation
 - Formulation considerations in frozen drug development
 - Influence of container compatibility and enhanced packaging

6

- Manufacturing Process Development
- Overview of manufacturing process process flow diagrams
- Mixing process optimization
- Mixing process scale up
- Considerations in solution filtration
- **Sterilization**
- Process validation

RAGS PHARMA CONSULTING

PRODUCT DEVELOPMENT OVERVIEW

			Upper Product	Limit		
Input from Functions			↑ ↑		Agreement from Functions	
• R & D• Quality• Regulatory• Sterilization• Clinical• Container• Business• Manufacturing(Marketing)• Packaging	Customer (internal / external) Program Management Leachables / Extractables Safety/Toxicity Assessment and pre-clinical	onent Gain	Allowable change for shelf-life [†]	These limits should be consistent with compendial requirements. For a given product, based upon safety/tox considerations, product limits may differ from compendia. Discuss all limits with Clinical,		
	Product Requirements	CO	UpperReleaseLimit	— — Manufacturing, and Regulatory team members.	Final Dru	y g Product
Intended Formulation / Container Closure					Formulation	Container Closure
Formulation	Container Closure	Product	Initial Testinal imits	Justification of	Drug concentration	Container size
 Drug concentration Diluent Buffer conc. pH % Oxygen control (if applicable) Tonicity adjustor Antioxidants Solubilizers 	 Container size Container material Closure system Fill Volume Sterilization method Overpouch 	Optimization /	Lower Release Limit Allowable change for shelf- life, based on results from	Allows for initial assay limits and changes during processing (hold time, sterilization, etc.) as well as assay variability. Allowable change over shelf - life is based on results from	 Diluent Buffer conc. pH % Oxygen control (if applicable) Tonicity adjustor Antioxidants Solubilizers Preservatives 	 Container material Closure system Fill Volume Sterilization method Overpouch
Storage temperature Shelf life · Label claims · Manufacturing location · Market region · Compendial Compliance (USP, EP, JP, etc.) Component conc., indiv impurities, impurities, Visual insp		conc., individual O impurities, total impurities, pH, etc. Visual inspection,	confidence bounds, label claims and marketing requirements [†]	confidence bounds, label claims and marketing requirements	Storage temperature Shelf li Manufacturing location Market	fe • Label claims • Compendial Complia (USP, EP, JP, etc.)
		particulate matter may influence shelf life	[†] At storage & labelling conditions; Apply 95 % confidence bound as appropriate.	The limits should take into consideration the desired features and Reasonable Use of the product.		
			Lower Product	Limit		
		RAG	gs Pharma Consulting			

RELEASE & PRODUCT LIMITS

- For attributes known to decrease over time, the lower one-sided 95% confidence bound is compared to acceptance criterion.
- For attributes known to increase over time, the upper one-sided 95% confidence bound is compared to acceptance criterion.
- For attributes that can either increase or decrease over time, two-sided 95% confidence bounds are compared to acceptance criterion.

SHELF-LIFE CONSIDERATIONS

Selection of Parenteral Dosage Forms

RAGS **P**HARMA CONSULTING

PARENTAL DOSAGE FORMS

Dosage Form	Fill Volume	Application
Ampoules	1 to 25 mL	Intramuscular Intravenous – Bolus Intravenous – Infusion after dilution
Vials - Liquid	1 to 100 mL	Intramuscular Intravenous – Bolus Intravenous – Infusion after dilution
Vials – Solid (Vials, infusion pack, pharmacy bulk package)	50 mg to 10 g	Intramuscular after reconstitution Intravenous – Bolus after reconstitution Intravenous – Infusion after reconstitution and dilution

RAGS **P**HARMA CONSULTING

PARENTAL DOSAGE FORMS CONT'D

	Dosage Form	Fill Volume	Application
	Glass Bottles	100 to 1500 mL	Intravenous Infusion
~	Syringes, Glass	1 to 50 mL	Intramuscular
1.4	& Plastic		Intravenous – Bolus
			 Intravenous – Infusion after dilution or with syringe pump
Sec.	Plastic Bags	25 mL to 5 L	Intravenous
			Dialysis (1 to 5 L)
			– PD
10			- CRRT
			 Hemodialysis
			Irrigation

RAGS PHARMA CONSULTING

PARENTAL DOSAGE FORMS-

ENHANCED PACKAGING

Dosage Form	Fill Volume	Application
Plastic Bag with Vial Adaptor •MINI-BAG™ Plus (Baxter) •ADD-Vantage® (Hospira)	50, 100 & 250 mL	Intravenous, after connecting vial and bag, and reconstituting
Premixed Frozen MINI- BAGS •Galaxy® Bags (Baxter)	50, 100 & 200 mL	Intravenous, after thawing

RAGS **P**HARMA CONSULTING

PARENTAL DOSAGE FORMS-

ENHANCED

PACKAGING CONT'D.

	Dosage Form	Fill Volume	Application
	Double Chambered Bags with liquid drug and liquid diluent	250 – 2000 mL	Intravenous, after admixing liquid drug and liquid diluent
	•Heparin – Dextrose Bags (Baxter)		
	Triple Chambered Bags for Total Parenteral Nutrition •Amino acids – dextrose-fat	1.0, 1.5, 2.0, & 2.5 L	Intravenous, after admixing the liquids from the 3 chambers
	emulsion (Baxter – Europe)		
	Double Chambered Bags with powder drug and liquid diluent	50 mL	Intravenous, after admixing powder drug and liquid diluent
10	 DUPLEX® Bags (B.Braun) 		

Rags Pharma Consulting

PARENTAL DOSAGE FORMS-ENHANCED PACKAGING CONT'D.

	Dosage Form	Fill Volume	Application
a station	Double Chambered Syringes with lyophilized drug and liquid diluent	25 mg	Intravenous or intramuscular after activation to mix powder drug and liquid diluent
	 Lyo-ject® (Arzneimittel Gmbh Vetter) 		
1	Dual Syringe System	2, 4 and 10 mL	In Biosurgery for Hemostatis
been	 DUPLOJECT (Baxter) for TISSEEL (Fibrin Sealant) 		
and the			

RAGS PHARMA CONSULTING

PARENTERAL PRODUCT CATEGORIES

DOSAGE FORM DECISION TREE FOR A NEW

PARENTERAL DRUG

17

SCIENTIFIC CONSIDERATIONS IN DOSAGE

FORM SELECTION

- Proposed drug dose & concentration
- Type of Administration
 - Injection
 - Infusion
- Type of compound (e.g., quinolone)
- Aqueous Solubility (pH effects)
- Aqueous stability (pH effects)
- Oxidation
- Light Stability
- Buffer effect
- Container Compatibility
 - Absorption
 - Leachables
 - Drug safety/handling

RAGS PHARMA CONSULTING

PREFORMULATION ACTIVITIES FOR PARENTERAL SOLUTIONS

Aqueous Drug Solubility

Aqueous Drug Stability

RAGS PHARMA CONSULTING

PREFORMULATION ACTIVITIES FOR PARENTERAL SOLUTIONS

Aqueous Drug Solubility

- pH- solubility profiles
- Solubility-temperature profile-heat of solution
- Co-solvents, other solubilizers
- Partition coefficient

RAGS PHARMA CONSULTING

PREFORMULATION OF PARENTERAL <u>SOLUTIONS</u>

- PH- Solubility Profiles
 - Many drug substances are either acidic or basic in nature and show differences in aqueous solubility as a function of pH depending on their ionization constants
 - The relationship between solubility and pH can be defined as follows:
 pH = pKa + log [Cs] /[Ca]

Where

pKa = negative logarithm of the ionization constant of the acid

{Cs } = molar concentration of salt form in water

[Ca]= molar concentration of free acid in water

Experimentally generated pH- solubility profile is essential to ensure solubility of the drug in the formulation at specified dose and formulation pH

PREFORMULATION OF PARENTERAL SOLUTIONS

Co-Solvents

- Examples: Ethanol, Propylene Glycol, Polyethylene Glycol
- Acid Solubilizers
 - Examples: Hydrochloric acid, lactic acid, methane sulfonic acid
- Surfactants
 - Examples: Polysorbate 8o, Cremaphor[®]
- Complexation Agents
 - Examples: Cyclodextrin

RAGS PHARMA CONSULTING

PREFORMULATION OF PARENTERAL SOLUTIONS

References on Solubilizers and other Parenteral Excipients

- Excipients and their use in injectable products. Sandeep Nema, R.J. Washkuhn, and R.J. Brendel. PDA Journal of Pharmaceutical Science and Technology. Vol. 51, No. 4. July August 1997
- Solubilizing Excipients in Oral and Injectable Formulations. Robert G. Strickley. Pharmaceutical Research. Vol. 21, No. 2, February 2004
- Compendium of excipients for Parenteral Formulations. Michael F. Powell, Tue Nguyen, and Lisa Baloian. PDA Journal of Pharmaceutical Science and Technology. Vol. 52, No. 5. September – October 1998.

RAGS PHARMA CONSULTING

PREFORMULATION ACTIVITIES FOR PARENTERAL SOLUTIONS

- Aqueous Drug Stability
 - Chemical kinetics
 - Degradation pathways
 - Identification and monitoring of degradation products

RAGS PHARMA CONSULTING

PREFORMULATION ACTIVITIES FOR PARENTERAL SOLUTIONS

- Aqueous Drug Stability Chemical kinetics
 - Arrhenius plots
 - Micellar effects on kinetics
 - Impact of excipients
 - Example
 - pH- rate profiles

RAGS PHARMA CONSULTING

ACCELERATED STUDIES & USE OF ARRHENIUS RELATIONSHIP

- Drug degradation rate is a key factor in formulation development
 - Many drug degradation reactions are slow and it may take up to several months at room temperature to determine the degradation rate.
 - In order to expedite the formulation optimization, degradation studies may be carried out at elevated temperatures and rate constants of room temperature can be estimated through Arrhenius relationship between the reaction rate and temperature.

RAGS PHARMA CONSULTING

<mark>p</mark>H – Rate Profiles of Penicillin G

in 0.5% (w/v) Non-micellar & 30% Micellar Concentrations

Source: J.T.H. Ong and H.B. Kostenbauder, J. Pharm. Sci., 64(8) 1378.

RAGS **P**HARMA CONSULTING

CEPHALOTHIN -

pH-Rate Profile for Hydrolysis of β -lactam Ring in Cephalothin at 30°C

Source: Chemical Stability of Pharmaceuticals. K.A. Connors, G. L. Amidon, and L. Kennon, John Wiley & Sons

RAGS **P**HARMA CONSULTING

PREFORMULATION ACTIVITIES FOR PARENTERAL

Aqueous Drug Stability – Degradation Pathways

- Hydrolysis
- Polymerization
- Isomerization/epimerization
- Oxidation
- Photolysis

RAGS PHARMA CONSULTING

PREFORMULATION OF PARENTERAL

SOLUTIONS

- References on Drug Degradation Pathways
 - Chemical Stability of Pharmaceuticals A Hand Book for Pharmacists. Chapters 4 and 5.
 Second Edition. Editors: Kenneth A. Connors, Gordon L. Amidon, and Valentino J. Stella.
 John Wiley and Sons.
 - Pharmaceutical Dosage Forms, Parenteral Medications, Volume 1. Kenneth E. Avis, Leon Lachman, and Herbert A. Lieberman, Editors. Marcel Dekker, Inc.
 - Remington: The Science and Practice of Pharmacy. Loyd V. Allen, Editor-Chair. Pharmaceutical Press. 22nd Edition (2012).
 - Physical Pharmacy. Alfred martin, James Swarbrick, and Arthur Cammarata. Editors. Lea & Fiebiger.

RAGS PHARMA CONSULTING

FORMULATION OPTIMIZATION

RAGS **P**HARMA CONSULTING

FORMULATION OPTIMIZATION OF PARENTERAL SOLUTIONS

- Approaches to minimize drug degradation
- Formulation considerations in frozen drug development
- Influence of container compatibility and enhanced packaging

RAGS PHARMA CONSULTING

FORMULATION OPTIMIZATION-

FORMULATION APPROACHES TO MINMIZE DRUG DEGRADATION

Hydrolysis

- Determine the optimum pH for pH- rate profiles
- Calculate change in hydrogen/hydroxyl ion concentration
- Select bugger if needed based on solution pH and buffer pKa
- Estimate the buffer concentration based on change in hydrogen/hydroxide ion concentration and buffer capacity of the buffer
- pKa of Commonly used Buffers for Parenterals

Acetic acid	4.76
Citric acid	3.15, 4.78, 6.40
Phosphoric acid	2.12, 7.21, 12.67

RAGS PHARMA CONSULTING

INFLUENCE OF CONTAINER SYSTEM ON FORMULATION

Protection

- Light
- Water Loss
- Oxygen Permeation
- Microbial Ingress

RAGS **P**HARMA CONSULTING

<u>CONTAINER SYSTEM –</u> DRUG FORMULATION COMPATIBILTY

Container Extractables

- pH Changes" Extractables from the plastic container may migrate into the solution and alter the formulation pH affecting the drug stability
- Excessive Levels of Extractables: Presence of solubilizers in the formulation may result in excessive levels of extractables
- Precipitation: Extractable may precipitate die to formulation pH

RAGS PHARMA CONSULTING

<u>CONTAINER SYSTEM –</u> DRUG FORMULATION COMPATIBILTY

Drug Adsorption/Sorption to the Plastic Container

- Some drugs such as nitroglycerin adsorb to PVC
- Some drugs may sorb into the plastic, particularly during autoclave sterilization (high temperature and pressure)

RAGS PHARMA CONSULTING

FACTORS IN PROCESS SCALE UP

RAGS **P**HARMA CONSULTING

Product Requirements

Product Development with Container & Closure System

RAGS PHARMA CONSULTING

Let us meet again..

We welcome you all to our future conferences of OMICS International **2nd International Conference and Expo** on **Parenterals and Injectables** On October 24-26, 2016 at Istanbul, Turkey http://parenterals-injectables.pharmaceuticalconferences.com/