About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Phrama scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Materials Science-2014 Oct. 6. 2014

Quantum Hall effect in multilayered massless Dirac fermion systems

Toho Univ., N. Tajima

α-(BEDT-TTF)₂I₃ (p>1.5 GPa)
 ✓ Dirac fermion system
 ✓ carriers (holes) doping

✓ Quantum transport phenomena
 SdH & QHE

Toho Univ.

:T. Ozawa, T. Yamauchi, Y. Nishio and K. Kajita

RIKEN

IMS

:Y. Kawasugi and R. Kato

:M. Suda and H. M. Yamamoto

Outline

- 1. Introduction
- 2. holes-doping: SdH and QHE
- 3. Conclusions

Outline

- 1. Introduction
- 2. holes-doping: SdH and QHE
- 3. Conclusions

Graphene: monolayer of graphite

P.R. Wallace, Phys. Rev. 71, 622 (1947) K. S. Novoselov et al., Nature 438(2005)197. Y. Zhang et al., Nature 438(2005)201.

 α -(BEDT-TTF)₂I₃ (*p*>1.5GPa) First bulk zero-gap <u>material</u>

K.Bender, et al., Mol. Cryst. liq. Cryst., 108 (1984) 359

2D-system

Conductive layer (BEDT-TTF) Insulating layer (I₃) Conductive layer (BEDT-TTF) Insulating layer (I₃) Conductive layer (BEDT-TTF)

Charge disproportionation

H.Kino and H.Fukuyama (Theory)H.Seo (Theory)Y.Takano, et.al. (NMR)R.Wojciechowski, et.al. (Raman)

J. Phys. Soc. Jpn. 64(1995)1877. J. Phys. Soc. Jpn. 69(2000)805. J. Physics and Chemistry. Solid 62(2001) 393. Phys.Rev.B 67(2003) 224105.

%1kbar=0.1GPa= 10,000 atm

What is interesting?

What is important?

E

 \vec{k}_{v}

Dirac point (contact point)

$$E = \pm \hbar v_F |\mathbf{k}|$$

Dirac cone

$$E = \frac{\hbar^2}{2m^*}k^2 : \text{normal-}e$$

m^{*}=0 : massless Dirac electrons

(relativistic electrons)

1. Introduction : Characteristic transport

✓ Sheet resistance: $R_s ~ h/e^2$ • Toho Univ. & RIKEN

✓ Carrier density: $n = \int Df dE \propto v_{\rm F}^{-2}T^2$ • Toho Univ. & RIKEN

✓ Anomalous σ_{xy} due to inter-band effects of *B* • Toho Univ. & RIKEN

A. Kobayashi, et al

peculiar magnetotransport
 Toho Univ. & RIKEN

1. Introduction : Landau level

Conventional conductor

Zero-gap structure

$$E_{\rm nLL} = \pm \sqrt{2e\hbar v_{\rm F}^2} |{\bf n}|| B|$$

 $\Delta = \sqrt{2e\hbar v_{\rm F}^2 B(\sqrt{|n|} - \sqrt{|n-1|})}$

1. Introduction : Zero-mode

Outline

- 1. Introduction
- 2. holes-doping: SdH and QHE
- 3. Conclusions

2. holes-doping: Other Landau level Can we inject the carriers into the sample?

2. holes-doping :

Can we inject the carriers into the sample?

$Yes \rightarrow Breakthrough$

2. holes-doping: resistivity

<u>N. T, et al., PRB, 88, 075315 (2013).</u>

 PEN is slightly charged in negative.
 n~10⁸ cm⁻²/layer at low-T

Fermi-liquid sate $\rho \propto T^2$

2. holes-doping: SdH & QHE

<u>N. T, et al., PRB, 88, 075315 (2013).</u>

1. PEN is slightly charged in negative.

2. $n \sim 10^8 \text{ cm}^{-2}/\text{layer}$ at low-T

hole-doping

B(T) 2 0 4 6 0.5 K 2000 R_{xx} R_{xx} , R_{xy} (Ω) R_{xy} FFT Amplitude 10 20 $B_f(T)$ $-(\mathrm{d}^2 R_{\mathrm{xx}} / \mathrm{d}B^2)$ 0 2 6 4 **B**(T)

oping

<u>N. T, et al., PRB, 88, 075315 (2013).</u>

QHE in 2D Dirac system $R_{xy}^{-1} = \nu e^2 / h$ $\nu = \pm 4(n + 1/2)$ $|\nu| = 2, 6, 10, 14, 18, \cdots$

2. holes-doping: QHE at 5.5 T

<u>N. T, et al., PRB, 88, 075315 (2013).</u>

Thickness dependence of conductivity

 \checkmark QHE around 5.5 T

 $\begin{array}{ll} A \dagger L_n \rightarrow 2, \ \nu_{\text{total}} = -8 \\ \checkmark \ \text{Undoped layer} \\ \sigma_{xx} \sim 0.07 e^2 / h, \quad \sigma_{xy} \sim 0.008 e^2 / h \end{array}$

3. Conclusions

Crystals on PEN

holes doping
Fermi liquid state
First observation of SdH & QHE
Direct evidence of Dirac system

Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit: http://materialsscience.conferenceseries.com/

Contact us at

<u>materialsscience.conference@omicsgroup.us</u> <u>materialsscience@omicsgroup.com</u>