

Hospital-based study of the spectrum of skeletal dysplasias in children in Northern India

Dr Namita Ravikumar MD Senior Resident Indira Gandhi Institute of Child Health Bangalore INDIA

Co-authors: Dr Ankur Singh, Dr Seema Kapoor, Dr RN Mandal, Dr VK Gautam, Dr Gaurav Pradhan

Maulana Azad Medical College, New Delhi, INDIA

Osteochondrodysplasia

- Complex group of bone &
 cartilage disorders affecting the fetal skeleton
- Disproportionate short stature
 & skeletal deformities
- More than 350 disorders
- Diagnosed based on clinical,
 radiographic & molecular

criteria

*Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A. 2007 Jan;143(1):1-18

Constitutional disorders of bone

	Osteochondrodysplasias				
Type/particulars		Dysplasia		Dystrophy	Dysostosis
Abnormality of	Growth			Structure	Structure
Site	Multiple bone/cartilage of				Individual bones
	axial/appendicular skeleton,				singly or in
	membranous &/or enchondral bone				combination
Failure of	Gene expression			Blastogenesis	
Phenotype	May evolve throughout life				Static

*Hall CM. International nosology and classification of constitutional disorders of bone (2001). Am J Med Genet. 2002 Nov;113(1):65-77

Approach to skeletal dysplasias

Radiological

- A Anatomical localisation
- B Bones
- C Complications
- D Death or lethality

*Dutton RV. A practical radiologic approach to skeletal dysplasias in infancy. Radiol Clin North Am. 1987 Nov;25(6):1211-33

Based on Anatomical location

دA	kial skeleton		Appendicular skeleton
Skull	Cranio/cranial		Epiphyseal
Face	Facio/facial	Location	Metaphyseal
Mandible	Mandibulo		Diaphyseal
Clavicle	Cleido		
Ribs	Costo		Rhizomelic (proximal e.g. femur)
Spine	Spondylo/vertebral	Shortening	Mesomelic (middle e.g. radius/ulna)
Pelvis	Ischio/ilio/pubic		Acromelic (distal- hands/feet)

*Dutton RV. A practical radiologic approach to skeletal dysplasias in infancy. Radiol Clin North Am. 1987 Nov;25(6):1211-33

Appendicular skeleton

Bones

- Structure abnormalities of bone density, presence of tumorous lesions
- **Shape** whole or part of a bone
- Size Absolute or relative to other bones (bone age to be considered)
- Sum too many, too few or fused
- Soft tissues wasting, excessive soft tissues, contractures & calcification

Punctate calcifications

Complications

- Fractures osteoporotic (e.g. osteogenesis imperfecta)
 & osteosclerotic (e.g. osteopetrosis) conditions
- Atlantoaxial subluxation Mucopolysaccharidosis (MPS)
- Progressive scoliosis Campomelic dysplasia
- Limb length discrepancies Epiphyseal stippling, Dysplasia epiphysealis hemimelica, Ollier's disease, multiple cartilaginous exostoses
- Malignancy Maffucci's syndrome

Complications

Death or lethality

- If a dysplasia is lethal it helps to exclude or confirm a given diagnosis
- Helps identify subtype affected & different modes of inheritance

Radiological Classification

A B C B C C C D C D C D C D C D C D C D C D C D C E C E C A+D Normal B+D Epiphyseal dysplasia C+D Metaphyseal dysplasia B+E Spondyloepiphyseal dysplasia C+E Spondyloepimetaphyseal dysplasia B+C+E Spondyloepimetaphyseal dysplasia	$\overline{\gamma}$	7 min		
DISEASE Category A+D Disease Category A+D Normal B+D Epiphyseal dysplasia C+D Metaphyseal dysplasia B+E Spondyloepiphyseal dysplasia C+E Spondylometaphyseal dysplasia B+C+E Spondyloepimetaphyseal dysplasia	A) B	l ©		
InvolvementDisease CategoryA+DNormalB+DEpiphyseal dysplasiaC+DMetaphyseal dysplasiaB+ESpondyloepiphyseal dysplasiaC+ESpondylometaphyseal dysplasiaB+C+ESpondyloepimetaphyseal dysplasia	0	J		
A+DNormalB+DEpiphyseal dysplasiaC+DMetaphyseal dysplasiaB+ESpondyloepiphyseal dysplasiaC+ESpondylometaphyseal dysplasiaB+C+ESpondyloepimetaphyseal dysplasia	Involvement	Disease Category		
B+DEpiphyseal dysplasiaC+DMetaphyseal dysplasiaB+ESpondyloepiphyseal dysplasiaC+ESpondylometaphyseal dysplasiaB+C+ESpondyloepimetaphyseal dysplasia	A+D	Normal		
C+D Metaphyseal dysplasia B+E Spondyloepiphyseal dysplasia C+E Spondylometaphyseal dysplasia B+C+E Spondyloepimetaphyseal dysplasia	B+D	Epiphyseal dysplasia		
B+E Spondyloepiphyseal dysplasia C+E Spondylometaphyseal dysplasia B+C+E Spondyloepimetaphyseal dysplasia	C+D	Metaphyseal dysplasia		
C+E Spondylometaphyseal dysplasia B+C+E Spondyloepimetaphyseal dysplasia	B+E	Spondyloepiphyseal dysplasia		
B+C+E Spondyloepimetaphyseal dysplasis	C+E	Spondylometaphyseal dysplasia		
	B+C+E	Spondyloepimetaphyseal dysplasia		

*Alanay Y, Lachman RS. A review of the principles of radiological assessment of skeletal dysplasias. J Clin Res Pediatr Endocrinol. 2011;3(4):163-78

Genetic basis & molecular mechanisms

- Abnormalities in the patterning, development, maintenance & size of skeleton (axial/appendicular)
- Mutations in various families of genes
- The most common is Achondroplasia

caused by mutations in the FGFR3 gene

Inheritance Pattern

- Genetically heterogeneous
- Inherited as AD, AR, XLR & XLD
- Rarely chromosomal deletions/duplications, germline mosaicism & uniparental disomy
- Intrafamilial & interfamilial variability

Molecular Pathogenetic Classification

Superti-furga et al grouped molecular defects of skeleton as

- Group 1: Extracellular structural proteins
- Group 2: Metabolic pathways (including enzymes, ion channels, transporters)
- Group 3: Folding, processing & degradation of macromolecules
- Group 4: Hormones & signal transduction mechanisms
- Group 5: Nuclear proteins & transcription factors
- Group 6: Oncogenes & tumour suppressor genes
- Group 7: RNA/DNA processing & metabolism

Prenatal diagnosis

- Meticulous sonographic examination thanatophoric dysplasia & osteogenesis imperfecta
- Previously affected child with a molecularly confirmed diagnosis - molecular analysis of DNA (CVS/Amniocentesis)→ direct mutational analysis/ linkage analysis

Prevalence

- Orioli et al (1978 -83) crude prevalence rate -2.3/10000
- Gustavson & Jorulf- 4.7/10 000
- Camera & Mastroiacovo 2.4/10 000
- Barbosa-Buck, Orioli et al (2012) 3.2 per 10,000
- Kulkarni et al 19.6/10,000 live born & lethal dysplasias-5.2/10,000 deliveries

*Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986 Aug;23(4):328-32 *Gustavson K-H, Jorulf H. Different types of osteochondrodysplasia in a consecutive series of newborns. Helv Paediatr Acta.1975;30:307-14 *Barbosa-Buck CO, Orioli IM, da Graça Dutra M, Lopez-Camelo J, Castilla EE, Cavalcanti DP. Clinical epidemiology of skeletal dysplasias in South America. Am J Med Genet A. 2012 May; 58A(5):1038-45 *Kulkarni ML, Samuel K, Bhagyavathi M, Sureshkumar C. Skeletal dysplasias in a hospital in Southern India. Indian Pediatr. 1995 Jun;32(6):657-65

Aims & Objectives

 To study the clinico-radiological spectrum of skeletal dysplasias in children

• To establish a molecular diagnosis wherever possible

Materials and methods

- 51 children with disproportionate short stature or skeletal deformities included (0-18 years of age)
- Cross-sectional study
- Lok Nayak Hospital, New Delhi, India (March 2013-14)
- Pediatric/orthopedic OPD, genetic clinic & admissions in pediatric/orthopaedic wards

Methodology

- Detailed history taking with special emphasis on
 - Age of noticing the problem
 - Family history 3 generation pedigree chart & h/o consanguinity
 - Maternal antenatal history & review of ultrasounds (current & previous pregnancies)
 - Developmental history
- Detailed head to toe examination including dysmorphology assessment

Anthropometry

The Anthropometric data were collected as follows-

- Height using stadiometer with head in Frankfurt plane (3 readings)
- Length < 2 years & those who could not stand, recumbent stature using an infantometer or using a non-stretchable flexible tape

- Armspan distance btw the tips of middle fingers with both arms outstretched
- Upper Segment: Lower Segment Ratio(US:LS) LS measured from the symphysis pubis to the heel & US derived by deducting the

Radiological Survey

Standard skeletal survey

- Skull AP & Lateral
- Chest PA/AP view
- Dorso lumbar spine AP & Lateral
- Pelvis AP including both femora
- Long bones including wrist & feet

Infantogram

Radiological Classification

The radiological abnormalities involving -

- The epiphysis, metaphyses or diaphysis
- The spine
- Multiple areas spondylometaphyseal/ epimetaphyseal

Radiographs

Radiological Diagnosis

Discussed with senior radiologist having special interest in skeletal dysplasias & also utilizing databases

- POSSUM web base
- London Dysmorphology database
- Spranger's text book of skeletal dysplasia
- European skeletal dysplasia registry

Ancillary Investigations

- Mucopolysaccharidosis → urinary testing for glycosaminoglycans & enzyme analysis for typification
- Serum Calcium, Phosphorus, Alkaline Phosphatase, Vitamin D3 levels
- Thyroid profile

Molecular Diagnosis

- Achondroplasia & Hypochondroplasia → PCR for mutations at FGFR codons 380 & 540 respectively
- Other genetic diagnosis → samples sent to researchers
 & collaborators engaged in delineating the particular
 skeletal dysplasia

Molecular Diagnosis

PCR-RFLP of achondroplasia patients (164bp \rightarrow 154bp & 55bp) and controls

Algorithm

Children 0-18 years with height <-2SD or obvious skeletal deformities

Altered US:LS ratio or arm spanheight difference

Detailed clinical examination

Radiological assessment

Molecular diagnosis

Results

 Total children enrolled

45

- Radiological diagnosis (88%)
 - 20
- Molecular diagnosis (39%)

Results

Sex distribution

Age distribution

Results

SKELETAL DYSPLASIA

Clinical details

- Parental consanguinity was present in 23.5% of skeletal dysplasias
- Abnormal antenatal ultrasonography was found in 3 cases
- 2 pairs of siblings included- MPS type IV A & Desbuquois dysplasia

Clinico radiological classification

SI no.	Group	Туре	Number
1	Lethal Osteochondrodysplasias	Atelosteogenesis	1
Ш	Chondrodysplasia Punctata	Chondrodysplasia punctata,	1
	Group	rhizomelic type	
ш	Predominant Metaphyseal	Achondroplasia	8
	involvement	Hypochondroplasia	1
		Asphyxiating thoracodystrophy	1
		Cartilage -Hair- Hypoplasia	1
IV	Predominant Epiphyseal	Pseudoachondroplasia	2
	involvement		

SI no.	Group	Туре	Number
V	Major involvement of the Spine	Spondylocostal dysplasia	1
		Kniest dysplasia	1
		Metatropic Dysplasia	1
		Diastrophic Dysplasia	1
		Dyggve-Melchoir-Clausen Syndrome	1
		Spondyloepiphyseal dysplasia	1
		Spondyloepimetaphyseal dysplasia	1
		Spondylothoracic dysostosis	1
VI	With Multiple Dislocations	Desbuquois dysplasia-Kim type	3
VII	Dysostosis Multiplex Complex	MPS type I	1
	Carbohydrate Storage Diseases	MPS type IV A	7
		MPS type IV B	1

SI no.	Group	Туре	Number
VIII	Predominant involvement of single	Rhizomelic dysplasia- Patterson Lowry type	1
	sites or Segments	Acromesomelic Dysplasia - Maroteaux type	1
IX	Predominant Diaphyseal		none
	involvement		
X	Decreased bone density	Osteogenesis imperfecta	1
XI	Increased bone density	Bent bone disease	1
XII	Disorganised development of bone		none
	constituents		
XIII	Osteolyses		none

Achondroplasia

Clinical features

Rhizomelic micromelia

Disproportionately large head

Depressed nasal bridge

Trident hand with short stubby fingers

Achondroplasia

Mucopolysachharidosis

Coarse facies

J shaped sella

Mucopolysachharidosis

Bullet shaped metacarpals

Inferior beaking

Pseudoachondroplasia

Irregularity in vertebral plates

Irregular epiphysis

Rhizomelic Chondrodysplasia Punctata

Rhizomelia anteverted nares <u>midfa</u>cial hypoplasia

Punctate calcification

Coronal clefting of vertebrae

Molecular Diagnosis

Diagnosis	Туре	Number	Mutation
Achondroplasia	Short limb	8	FGFR3 G>A 1138 transition
Hypochondroplasia	Short limb	1	FGFR3 c1620C>A heterozygous mutation
Pseudoachondroplasia	Short limb	2	c.1554C>G;p.D518E
		2	c.155C>T in exon 2 of the GALNS
Mps Type IV A (Morquio)	Short trunk	1	[c.3G>A;p.Met1][c.452C>T;p.P151L]
Desbuquois Dysplasia -			
kim type	Short limb	3	c.C467T p.Ser156Ph
Cartilage Hair Hypoplasia	Short limb	1	g.69dupG,r69dupG
Dyggve-Melchoir-Clausen			
Dysplasia	Short trunk	1	DYM_v001):c.1923del deletion
Rhizomelic			
Chondrodysplasia			
Punctata	Short limb	1	PEX7 mutation in the L292X allele

Conclusion

- Clinical examination & radiological assessment are sufficient to diagnose a majority of cases
- If a diagnosis made, prognosis can be explained in terms of expected complications, final adult height, intelligence & also for genetic counselling
- Emphasis on early diagnosis to prevent complications
- No definitive treatment → focus on prenatal diagnosis by ultrasonography & molecular methods

Conclusion

- Males were significantly higher probably due to gender bias in seeking medical attention
- Maximum cases belonged to the age group of 6- 10 years
 - Height compared with that of the peers
 - Home deliveries accounting for not seeking medical attention
- Limitations
 - Hospital based study
 - Still births not included

Future prospects

- Larger studies in community including still births are necessary to establish the true prevalence & spectrum of skeletal dysplasia
- Studies including cases diagnosed antenatally are essential to highlight the importance of prenatal diagnosis

Acknowledgements

- Departments of Pediatrics, Radiology & Orthopedics, Maulana Azad Medical College, New Delhi, India
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bangalore, India
- Organizers

Heck, yes I'm short. God only lets things

grow until they are

Perfect

some of us didn't take as long as others!

hank you